8 resultados para Fresh frozen human bone

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diplomityö tehtiin Lappeenrannan teknillisen yliopiston konetekniikan laitokselle. Diplomityö on osa teknillisen yliopiston biomekaanista tutkimusta, jonka tarkoituksena on mallintaa ihmisen tuki- ja liikuntaelimistön toimintaa. Työssä pyrittiin selvittämään, voitaisiinko sääriluuhun kohdistetun mekaanisen herätteen aiheuttamaa värähtelyvastetta analysoimalla saada tietoa luun ominaistaajuuksista ja lujuudesta. Tietoa voitaisiin käyttää esimerkiksi ostoporoosiriskin arvioinnissa sekä ihmiskehon osien toimintaa kuvaavien simulointimallien verifioinnissa. Mittauslaitteistona käytettiin Brüel & Kjær-moodianalyysilaitteistoa. Laitteistokokonaisuuteen kuuluivat herätevasara, elektromagneettinen täristin, voima-anturi, kaksi kiihtyvyysmitta-anturia sekä PulseLab 2.0 –ohjelmistolla varustettu PC-laitteisto. Tulosten jatkoanalyysi suoritettiin MathWorks yhtiön MatLab v 4.0 -ohjelmistolla. Työssä esitellyn mittaustavan ja -laitteiston todettiin soveltuvan sääriluun värähtelyvasteen mittaamiseen. Mittaustulokset eri mittauskertojen välillä samalla henkilöllä ovat yhtenevät. Tutkimuksen tulosten perusteella ei voida osoittaa luun värähtelyvasteen ja lujuuden välistä suoraa korrelaatiota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Approximately 11,000 revascularization procedures, either percutaneous coronary interventions (PCI) or coronary artery bypass grafting surgery (CABG), are performed yearly in Finland for coronary artery disease. Periprocedural risk factors for mortality and morbidity as well as long-term outcome have been extensively studied in general populations undergoing revascularization. Treatment choice between PCI and CABG in many high risk groups and risk-stratification, however, needs clarification and there is still room for improvement in periprocedural outcomes. Materials and methods: Cohorts of patients from Finnish hospitals revascularized between 2001 and 2011 were retrospectively analyzed. Patient records were reviewed for baseline variables and postprocedural outcomes (stroke, myocardial infarction, quality of life measured by the EQ-5D –questionnaire, repeat revascularization, bleeding episodes). Data on date and mode of death was acquired from Statistics Finland. Statistical analysis was performed to identify predictors of adverse events and compare procedures. Results: Postoperative administration of blood products (red blood cells, fresh frozen plasma, platelets) after isolated CABG independently and dose-dependently increases the risk of stroke. Patients 80 years or older who underwent CABG had better survival at 5 years compared to those who underwent PCI. After adjusting for baseline differences survival was similar. Patients on oral anticoagulation (OAC) for atrial fibrillation (AF) treated with CABG had better survival and overall outcome at 3 years compared to PCI patients. There was no difference in incidence of stroke or bleeding episodes. Differences in outcome remained significant after adjusting for propensity score. Lower health-related quality of life (HRQOL) scores as measured by the visual analogue scale (VAS) of the EQ-5D questionnaire at 6 months after CABG predicted later major adverse cardiac and cerebrovascular events (MACCE). Deteriorating function and VAS scores between 0 and 6 months on the EQ-5D also independently predicted later MACCE. Conclusions: Administration of blood products can increase the risk of stroke after CABG and liberal use of transfusions should be avoided. In the frail subpopulations of patients on OAC and octogenarians CABG appears to offer superior long-term outcome as compared to PCI. Deteriorating HRQOL scores predict later adverse events after CABG. Keywords: percutaneous coronary intervention, coronary artery bypass grafting, age over 80, transfusion, anticoagulants, coronary artery disease, health-related quality of life, outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human motion study, which relies on mathematical and computational models ingeneral, and multibody dynamic biomechanical models in particular, has become asubject of many recent researches. The human body model can be applied to different physical exercises and many important results such as muscle forces, which are difficult to be measured through practical experiments, can be obtained easily. In the work, human skeletal lower limb model consisting of three bodies in build using the flexible multibody dynamics simulation approach. The floating frame of reference formulation is used to account for the flexibility in the bones of the human lower limb model. The main reason of considering the flexibility inthe human bones is to measure the strains in the bone result from different physical exercises. It has been perceived the bone under strain will become stronger in order to cope with the exercise. On the other hand, the bone strength is considered and important factors in reducing the bone fractures. The simulation approach and model developed in this work are used to measure the bone strain results from applying raising the sole of the foot exercise. The simulation results are compared to the results available in literature. The comparison shows goof agreement. This study sheds the light on the importance of using the flexible multibody dynamic simulation approach to build human biomechanical models, which can be used in developing some exercises to achieve the optimalbone strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skeleton undergoes continuous turnover throughout life. In women, an increase in bone turnover is pronounced during childhood and puberty and after menopause. Bone turnover can be monitored by measuring biochemical markers of bone resorption and bone formation. Tartrate-resistant acid phosphatase (TRACP) is an enzyme secreted by osteoclasts, macrophages and dendritic cells. The secreted enzyme can be detected from the blood circulation by recently developed immunoassays. In blood circulation, the enzyme exists as two isoforms, TRACP 5a with an intact polypeptide chain and TRACP 5b in which the polypeptide chain consists of two subunits. The 5b form is predominantly secreted by osteoclasts and is thus associated with bone turnover. The secretion of TRACP 5b is not directly related to bone resorption; instead, the levels are shown to be proportional to the number of osteoclasts. Therefore, the combination of TRACP 5b and a marker reflecting bone degradation, such as C-terminal cross-linked telopeptides of type I collagen (CTX), enables a more profound analysis of the changes in bone turnover. In this study, recombinant TRACP 5a-like protein was proteolytically processed into TRACP 5b-like two subunit form. The 5b-like form was more active both as an acid phosphatase and in producing reactive oxygen species, suggesting a possible function for TRACP 5b in osteoclastic bone resorption. Even though both TRACP 5a and 5b were detected in osteoclasts, serum TRACP 5a levels demonstrated no change in response to alendronate treatment of postmenopausal women. However, TRACP 5b levels decreased substantially, demonstrating that alendronate decreases the number of osteoclasts. This was confirmed in human osteoclast cultures, showing that alendronate decreased the number of osteoclats by inducing osteoclast apoptosis, and TRACP 5b was not secreted as an active enzyme from the apoptotic osteoclasts. In peripubertal girls, the highest levels of TRACP 5b and other bone turnover markers were observed at the time of menarche, whereas at the same time the ratio of CTX to TRACP 5b was lowest, indicating the presence of a high number of osteoclasts with decreased resorptive activity. These results support the earlier findings that TRACP 5b is the predominant form of TRACP secreted by osteoclasts. The major source of circulating TRACP 5a remains to be established, but is most likely other cells of the macrophage-monocyte system. The results also suggest that bone turnover can be differentially affected by both osteoclast number and their resorptive activity, and provide further support for the possible clinical use of TRACP 5b as a marker of osteoclast number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hormone-dependent diseases, e.g. cancers, rank high in mortality in the modern world, and thus, there is an urgent need for new drugs to treat these diseases. Although the diseases are clearly hormone-dependent, changes in circulating hormone concentrations do not explain all the pathological processes observed in the diseased tissues. A more inclusive explanation is provided by intracrinology – a regulation of hormone concentrations at the target tissue level. This is mediated by the expression of a pattern of steroid-activating and -inactivating enzymes in steroid target tissues, thus enabling a concentration gradient between the blood circulation and the tissue. Hydroxysteroid (17beta) dehydrogenases (HSD17Bs) form a family of enzymes that catalyze the conversion between low active 17-ketosteroids and highly active 17beta-hydroxysteroids. HSD17B1 converts low active estrogen (E1) to highly active estradiol (E2) with high catalytic efficiency, and altered HSD17B1 expression has been associated with several hormone-dependent diseases, including breast cancer, endometriosis, endometrial hyperplasia and cancer, and ovarian epithelial cancer. Because of its putative role in E2 biosynthesis in ovaries and peripheral target tissues, HSD17B1 is considered to be a promising drug target for estrogen-dependent diseases. A few studies have indicated that the enzyme also has androgenic activity, but they have been ignored. In the present study, transgenic mice overexpressing human HSD17B1 (HSD17B1TG mice) were used to study the effects of the enzyme in vivo. Firstly, the substrate specificity of human HSD17B1 was determined in vivo. The results indicated that human HSD17B1 has significant androgenic activity in female mice in vivo, which resulted in increased fetal testosterone concentration and female disorder of sexual development appearing as masculinized phenotype (increased anogenital distance, lack of nipples, lack of vaginal opening, combination of vagina with urethra, enlarged Wolffian duct remnants in the mesovarium and enlarged female prostate). Fetal androgen exposure has been linked to polycystic ovary syndrome (PCOS) and metabolic syndrome during adulthood in experimental animals and humans, but the genes involved in PCOS are largely unknown. A putative mechanism to accumulate androgens during fetal life by HSD17B1 overexpression was shown in the present study. Furthermore, as a result of prenatal androgen exposure locally in the ovaries, HSD17B1TG females developed ovarian benign serous cystadenomas in adulthood. These benign lesions are precursors of low-grade ovarian serous tumors. Ovarian cancer ranks fifth in mortality of all female cancers in Finland, and most of the ovarian cancers arise from the surface epithelium. The formation of the lesions was prevented by prenatal antiandrogen treatment and by transplanting wild type (WT) ovaries prepubertally into HSD17B1TG females. The results obtained in our non-clinical TG mouse model, together with a literature analysis, suggest that HSD17B1 has a role in ovarian epithelial carcinogenesis, and especially in the development of serous tumors. The role of androgens in ovarian carcinogenesis is considered controversial, but the present study provides further evidence for the androgen hypothesis. Moreover, it directly links HSD17B1-induced prenatal androgen exposure to ovarian epithelial carcinogenesis in mice. As expected, significant estrogenic activity was also detected for human HSD17B1. HSD17B1TG mice had enhanced peripheral conversion of E1 to E2 in a variety of target tissues, including the uterus. Furthermore, this activity was significantly decreased by treatments with specific HSD17B1 inhibitors. As a result, several estrogen-dependent disorders were found in HSD17B1TG females. Here we report that HSD17B1TG mice invariably developed endometrial hyperplasia and failed to ovulate in adulthood. As in humans, endometrial hyperplasia in HSD17B1TG females was reversible upon ovulation induction, triggering a rise in circulating progesterone levels, and in response to exogenous progestins. Remarkably, treatment with a HSD17B1 inhibitor failed to restore ovulation, yet completely reversed the hyperplastic morphology of epithelial cells in the glandular compartment. We also demonstrate that HSD17B1 is expressed in normal human endometrium, hyperplasia, and cancer. Collectively, our non-clinical data and literature analysis suggest that HSD17B1 inhibition could be one of several possible approaches to decrease endometrial estrogen production in endometrial hyperplasia and cancer. HSD17B1 expression has been found in bones of humans and rats. The non-clinical data in the present study suggest that human HSD17B1 is likely to have an important role in the regulation of bone formation, strength and length during reproductive years in female mice. Bone density in HSD17B1TG females was highly increased in femurs, but in lesser amounts also in tibias. Especially the tibia growth plate, but not other regions of bone, was susceptible to respond to HSD17B1 inhibition by increasing bone length, whereas the inhibitors did not affect bone density. Therefore, HSD17B1 inhibitors could be safer than aromatase inhibitors in regard to bone in the treatment of breast cancer and endometriosis. Furthermore, diseases related to improper growth, are a promising new indication for HSD17B1 inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel biomaterials are needed to fill the demand of tailored bone substitutes required by an ever‐expanding array of surgical procedures and techniques. Wood, a natural fiber composite, modified with heat treatment to alter its composition, may provide a novel approach to the further development of hierarchically structured biomaterials. The suitability of wood as a model biomaterial as well as the effects of heat treatment on the osteoconductivity of wood was studied by placing untreated and heat‐treated (at 220 C , 200 degrees and 140 degrees for 2 h) birch implants (size 4 x 7mm) into drill cavities in the distal femur of rabbits. The follow‐up period was 4, 8 and 20 weeks in all in vivo experiments. The flexural properties of wood as well as dimensional changes and hydroxyl apatite formation on the surface of wood (untreated, 140 degrees C and 200 degrees C heat‐treated wood) were tested using 3‐point bending and compression tests and immersion in simulated body fluid. The effect of premeasurement grinding and the effect of heat treatment on the surface roughness and contour of wood were tested with contact stylus and non‐contact profilometry. The effects of heat treatment of wood on its interactions with biological fluids was assessed using two different test media and real human blood in liquid penetration tests. The results of the in vivo experiments showed implanted wood to be well tolerated, with no implants rejected due to foreign body reactions. Heat treatment had significant effects on the biocompatibility of wood, allowing host bone to grow into tight contact with the implant, with occasional bone ingrowth into the channels of the wood implant. The results of the liquid immersion experiments showed hydroxyl apatite formation only in the most extensively heat‐treated wood specimens, which supported the results of the in vivo experiments. Parallel conclusions could be drawn based on the results of the liquid penetration test where human blood had the most favorable interaction with the most extensively heat‐treated wood of the compared materials (untreated, 140 degrees C and 200 degrees C heat‐treated wood). The increasing biocompatibility was inferred to result mainly from changes in the chemical composition of wood induced by the heat treatment, namely the altered arrangement and concentrations of functional chemical groups. However, the influence of microscopic changes in the cell walls, surface roughness and contour cannot be totally excluded. The heat treatment was hypothesized to produce a functional change in the liquid distribution within wood, which could have biological relevance. It was concluded that the highly evolved hierarchical anatomy of wood could yield information for the future development of bulk bone substitutes according to the ideology of bioinspiration. Furthermore, the results of the biomechanical tests established that heat treatment alters various biologically relevant mechanical properties of wood, thus expanding the possibilities of wood as a model material, which could include e.g. scaffold applications, bulk bone applications and serving as a tool for both mechanical testing and for further development of synthetic fiber reinforced composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone strain plays a major role as the activation signal for the bone (re)modeling process, which is vital for keeping bones healthy. Maintaining high bone mineral density reduces the chances of fracture in the event of an accident. Numerous studies have shown that bones can be strengthened with physical exercise. Several hypotheses have asserted that a stronger osteogenic (bone producing) effect results from dynamic exercise than from static exercise. These previous studies are based on short-term empirical research, which provide the motivation for justifying the experimental results with a solid mathematical background. The computer simulation techniques utilized in this work allow for non-invasive bone strain estimation during physical activity at any bone site within the human skeleton. All models presented in the study are threedimensional and actuated by muscle models to replicate the real conditions accurately. The objective of this work is to determine and present loading-induced bone strain values resulting from physical activity. It includes a comparison of strain resulting from four different gym exercises (knee flexion, knee extension, leg press, and squat) and walking, with the results reported for walking and jogging obtained from in-vivo measurements described in the literature. The objective is realized primarily by carrying out flexible multibody dynamics computer simulations. The dissertation combines the knowledge of finite element analysis and multibody simulations with experimental data and information available from medical field literature. Measured subject-specific motion data was coupled with forward dynamics simulation to provide natural skeletal movement. Bone geometries were defined using a reverse engineering approach based on medical imaging techniques. Both computed tomography and magnetic resonance imaging were utilized to explore modeling differences. The predicted tibia bone strains during walking show good agreement with invivo studies found in the literature. Strain measurements were not available for gym exercises; therefore, the strain results could not be validated. However, the values seem reasonable when compared to available walking and running invivo strain measurements. The results can be used for exercise equipment design aimed at strengthening the bones as well as the muscles during workout. Clinical applications in post fracture recovery exercising programs could also be the target. In addition, the methodology introduced in this study, can be applied to investigate the effect of weightlessness on astronauts, who often suffer bone loss after long time spent in the outer space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strikes provide a current, fresh but also a seldom-addressed issue to study from economic sciences perspective. This study provides to filling this research gap by trying to identify attitudes towards strikes that can be found inside organizations. The research problem this study then sets out to answer is: “What kinds of attitudes exist inside organizations towards industrial actions and how attitudes vary between labour, management and human resources?” This study has been planned with a view to test how qualitative attitudinal research, as a method, is suited to studying a phenomenon such as strike. At the heart of this research approach lies an assumption linked to rhetoric social psychology, that attitude is a phenomenon that can be identified in argumentation. For this research 10 semi-structured interviews in 4 organizations were conducted utilizing statements and pictures as stimulants for discussion. The material was transcribed and analysed following the two levels, categorical and interpretive, demanded by the chosen method. Altogether five attitudes were discovered; three of them negative, one indifferent and one positive by nature. The negative attitudes of unfairness, failure and personification towards strikes represented the side of strikes that was perhaps the most anticipated, portraying the contradictions between employees and employer. The attitude of ordinariness, which portrayed indifference, and the positive attitude of change however, were more unanticipated findings. They reflect shared understanding and trust between conflict parties. The utilization of qualitative attitudinal approach to study strikes was deemed successful. The results of this study support prior literature on workplace conflicts for example in regards of the definition of conflict and typologies conflicts. In addition the multifaceted nature of strikes can be perceived as one statement supported by this study. It arises in the nature of the attitudes, the diversity of discussion themes during the interviews as well as in the extent of possible theories to apply.