2 resultados para Finite Simple Groups

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A subshift is a set of in nite one- or two-way sequences over a xed nite set, de ned by a set of forbidden patterns. In this thesis, we study subshifts in the topological setting, where the natural morphisms between them are ones de ned by a (spatially uniform) local rule. Endomorphisms of subshifts are called cellular automata, and we call the set of cellular automata on a subshift its endomorphism monoid. It is known that the set of all sequences (the full shift) allows cellular automata with complex dynamical and computational properties. We are interested in subshifts that do not support such cellular automata. In particular, we study countable subshifts, minimal subshifts and subshifts with additional universal algebraic structure that cellular automata need to respect, and investigate certain criteria of `simplicity' of the endomorphism monoid, for each of them. In the case of countable subshifts, we concentrate on countable so c shifts, that is, countable subshifts de ned by a nite state automaton. We develop some general tools for studying cellular automata on such subshifts, and show that nilpotency and periodicity of cellular automata are decidable properties, and positive expansivity is impossible. Nevertheless, we also prove various undecidability results, by simulating counter machines with cellular automata. We prove that minimal subshifts generated by primitive Pisot substitutions only support virtually cyclic automorphism groups, and give an example of a Toeplitz subshift whose automorphism group is not nitely generated. In the algebraic setting, we study the centralizers of CA, and group and lattice homomorphic CA. In particular, we obtain results about centralizers of symbol permutations and bipermutive CA, and their connections with group structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absolute nodal coordinate formulation was originally developed for the analysis of structures undergoing large rotations and deformations. This dissertation proposes several enhancements to the absolute nodal coordinate formulation based finite beam and plate elements. The main scientific contribution of this thesis relies on the development of elements based on the absolute nodal coordinate formulation that do not suffer from commonly known numerical locking phenomena. These elements can be used in the future in a number of practical applications, for example, analysis of biomechanical soft tissues. This study presents several higher-order Euler–Bernoulli beam elements, a simple method to alleviate Poisson’s and transverse shear locking in gradient deficient plate elements, and a nearly locking free gradient deficient plate element. The absolute nodal coordinate formulation based gradient deficient plate elements developed in this dissertation describe most of the common numerical locking phenomena encountered in the formulation of a continuum mechanics based description of elastic energy. Thus, with these fairly straightforwardly formulated elements that are comprised only of the position and transverse direction gradient degrees of freedom, the pathologies and remedies for the numerical locking phenomena are presented in a clear and understandable manner. The analysis of the Euler–Bernoulli beam elements developed in this study show that the choice of higher gradient degrees of freedom as nodal degrees of freedom leads to a smoother strain field. This improves the rate of convergence.