6 resultados para Filmes de Langmuir
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Työssä tutkittiin jalometallien selektiivistä erottamista kloridiliuoksista synteettisten polymeerihartsien avulla. Laboratoriokokeissa keskityttiin tutkimaan kullan erottamista hydrofiilisen polymetakrylaattipohjaisen adsorbentin avulla. Lähtökohtana oli platinarikaste, joka sisälsi kullan lisäksi platinaa, palladiumia, hopeaa, kuparia, rautaa, vismuttia, seleeniä ja telluuria. Mittauksissa tutkittiin eri metallien ja puolimetallien adsorptiota hartsiin tasapaino-, kinetiikka- ja kolonnikokeilla. Työssä käytettiin myös adsorption simulointiin monikomponenttierotuksen dynaamiseen mallintamiseen tarkoitettua tietokoneohjelmaa, johon tarvittavat parametrit estimoitiin kokeellisen datan avulla. Tasapainokokeet yhtä metallia sisältäneistä liuoksista osoittivat, että hartsi adsorboi tehokkaasti kultaa kaikissa tutkituissa suolahappopitoisuuksissa (1-6 M). Kulta muodostaa hartsiin hyvin adsorboituvia tetrakloroauraatti(III)ioneja, [AuCl4]-, jotka ovat erittäin stabiileja pieniin kloridipitoisuuksiin saakka. Suolahappopitoisuudella oli merkitystä ainoastaan raudan adsorptioon, joka kasvoi huomattavasti suolahappopitoisuuden noustessa johtuen raudan taipumuksesta muodostaa hyvin adsorboituvia [FeCl4]--ioneja väkevissä suolahappopitoisuuksissa. Muiden tutkittujen alkuaineiden adsorptiot jäivät alhaisiksi kaikilla suolahappopitoisuuksilla. Rikasteliuoksella tehdyt tasapainokokeet osoittivat, että adsorptiokapasiteetti kullalle riippuu voimakkaasti muista läsnäolevista komponenteista. Kilpaileva adsorptio kuvattiin Langmuir-Freundlich-isotermillä. Kolonnikokeet osoittivat, että hartsi adsorboi kullan lisäksi hieman myös rautaa ja telluuria, jotka saatiin kuitenkin eluoitua hartsista täysin 5 M suolahappopesulla ja sitä seuraavalla 1 M suolahappopesulla. Tehokkaaksi liuokseksi kullan desorboimiseen osoittautui asetonin ja 1 M suolahapon seos. Kolonnierotuksen eri vaiheet pystyttiin tyydyttävästi kuvaamaan simulointimallilla.
Resumo:
Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.
Resumo:
Under de senaste åren har intresset för utnyttjandet av förnybara resurser kraftigt ökat. I samband med detta utgör kolhydrater en viktig del av den tillgängliga förnybara biomassan och den har därefter blivit föremål för ett stort intresse inom hållbar kemi. Sockeralkoholer är en särskilt viktig grupp av molekyler som vanligtvis erhålls ur kolhydrater och som har mångsidiga tillämpningar som t.ex. lågkalorihaltiga sötningsmedel. Forskningen i doktorsarbetet omfattar hydreringen av naturligt förekommande sockerarter L-arabinos, D-galaktos, D-maltos och L-ramnos till respektive sockeralkoholer. Dessa sockeralkoholer kan användas bl.a. som hälsosamma sötningsmedel på samma sätt som xylitol. Grunden för detta arbete består av hydreringsexperiment som utfördes på en dispergerad ruteniumkatalysator i syfte att studera bildningskinetiken av de motsvarande sockeralkoholerna. Reaktionerna genomfördes vid temperaturer mellan 90 och 130 °C och vätetryck mellan 40 och 60 bar. Under dessa betingelser var det möjligt att åstadkomma sockeromvandlingar upp till 100 %. Reaktionshastigheterna modellerades matematiskt. Konkurrerande kinetiska modeller som baserades på Langmuir-Hinshelwood-konceptet föreslogs för att beskriva reaktionerna. Parametrar i hastighetsekvationerna bestämdes därefter genom icke-linjär regression. Dessa modeller kunde väl förutsäga hydreringsreaktionernas förlopp och de kan följaktligen användas för design av industriella anläggningar. Ytterligare hydreringsexperiment med sockerblandningar genomfördes för att fördjupa kunskaper i kinetik och reaktionsmekanismer av sockerhydreringen. Studierna genomfördes med syntetiska sockerblandningar av L-arabinos och D-galaktos (de viktigaste komponenterna i hemicellulosan arabinogalaktan). Fullständig omsättning uppnåddes med utmärkta selektiviteter som överskred 95 % och dessutom inverkade varken temperatur eller vätetryck på reaktionens förlopp på något oväntat sätt. Antagandet av konkurrerande adsorption för en samtidig reduktion av båda sockermolekylerna gav en kinetisk modell som noggrant beskrev de experimentella resultaten. Idén om att utforska potentiella sätt att påskynda bildningen av sockeralkoholer ledde till utföringen av hydreringsexperiment med L-arabinos och D-galaktos i närvaro av ultraljud. Det visade sig att ultraljudets inverkan var oberoende av sockerhalten och vätetrycket och att bestrålningen gynnade hydreringen av D-galaktos trots att den inte förhindrade Ru/C-katalysatorns deaktivering överhuvudtaget. En kinetisk modell som beaktade deaktiveringen utvecklades. Kontinuerlig hydrering av L-arabinos genomfördes med tre olika Ru-katalysatorer på tre olika bärare: tyg av aktivt kol, kolnanorör på svampliknande metalliska strukturer samt krossade partiklar av en kommersiell Ru/C-katalysator. Det visade sig att det var möjligt att omvandla L-arabinos till arabitol med höga selektiviteter med hjälp av Ru/koltyg-katalysatorn. Dessa experiment demonstrerade att hydreringen av de valda sockerarterna är en helt genomförbar rutt till framställning av fin- och specialkemikalier, som kan förverkligas i större skala.
Resumo:
Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.
Resumo:
Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.
Resumo:
The objectives of this work were synthesizing an EDTA-β-CD adsorbent and investigating its adsorption potential and applications in preconcentration of REEs from aqueous phase. The adsorption capacity of EDTA-β-CD was investigated. The adsorption studies were performed by batch techniques both in one- and multi-component systems. The effects of pH, contact time and initial concentration were evaluated. The analytical detection methods and characterization methods were presented. EDTA-β-CD adsorbent was synthesized successfully with high EDTA coverage. The maximum REEs uptake was 0.310 mmol g-1 for La(III), 0.337 mmol g-1 for Ce(III) and 0.353 mmol g-1 for Eu(III), respectively. The kinetics of REEs onto EDTA-β-CD fitted well to pseudo-second-order model and the adsorption rate was affected by intra-particle diffusion. The experimental data of one component studies fitted to Langmuir isotherm model indicating the homogeneous surface of the adsorbent. The extended Sips model was applicable for the isotherm studies in three-component system. The electrostatic interaction, chelation and complexation were all involved in the adsorption mechanism. The preconcentration of RE ions and regeneration of EDTA-β-CD were successful. Overall, EDTA-β-CD is an effective adsorbent in adsorption and preconcentration of REEs.