4 resultados para Fetal Development
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Many of the reproductive disorders that emerge in adulthood have their origin during fetal development. Numerous studies have demonstrated that exposure to endocrine disrupting chemicals can permanently affect the reproductive health of experimental animals. In mammals, male sexual differentiation and development are androgen-dependent processes. In rat, the critical programming window for masculinization occurs between embryonic days (EDs) 15.5 and 19.5. Disorders in sex steroid balance during fetal life can disturb the development of the male reproductive tract. In addition to the fetal testis, the adrenal cortex starts to produce steroid hormones before birth. Glucocorticoids produced by the adrenal cortex are essential for preparing the fetus for birth. In the present study, the effects of exposure to endocrine disrupters on fetal male rat testicular and adrenal development were investigated. To differentiate the systemic and direct testicular effects of endocrine disrupters, both in vivo and in vitro experiments were performed. The present study also clarified the role of desert hedgehog signalling (Dhh) in the development of the testis. The results indicate that endocrine disrupters, diethylstilbestrol (DES) and flutamide, are able to induce rapid steroidogenic changes in fetal rat testis under in vitro conditions. Although in utero exposure to these chemicals did not show overt effects in fetal testis, they can induce permanent changes in the developing testis and accessory sex organs later in life. We also reported that exposure to antiandrogens can interfere with testicular Dhh signalling and result in impaired differentiation of the fetal Leydig cells and subsequently lead to abnormal testicular development and sexual differentiation. In utero exposure to tetrachlorodibenzo-p-dioxin (TCDD) caused direct testicular and pituitary effects on the fetal male rat but with different dose responses. In a study in which the effects of developmental exposure to environmental antiandrogens, di-isononylphthalate and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p’-DDE), on fetal male rat steroidogenesis were investigated, chemicals did not down-regulate testicular or adrenal steroid hormone synthesis or production in 19.5-day-old fetal rats. However, p,p’-DDE-treatment caused clear histological and ultrastructural changes in the prenatal testis and adrenal gland. These structural alterations can disturb the development and function of fetal testis and adrenal gland that may become evident later in life. Exposure to endocrine disrupters during fetal life can cause morphological abnormalities and alter steroid hormone production by fetal rat Leydig cells and adrenocortical cells. These changes may contribute to the maldevelopment of the testis and the adrenal gland. The present study highlights the importance of the fetal period as a sensitive window for endocrine disruption.
Resumo:
Background: Although the knowledge of adverse effects of smoking during pregnancy has increased in recent years, more research is needed to gain a better understanding of the effects of smoking during pregnancy. Smoking exposure is the most common preventable factor that causes adverse pregnancy outcomes. Aims and Methods: First, data on smoking habits during pregnancy from the Nordic Medical Birth Registers was used to study the national differences in trends of smoking during pregnancy. Second, the effects of prenatal smoking exposure on fetal brain development, assessed by brain MRI at term age, were studied by using data from the multidisciplinary PIPARI Study consisting of a 6-year cohort of VLBW/VLGA infants (n = 232, of which 18.1% were exposed to prenatal smoking) born in Turku University Hospital, Finland. Third, the effects of prenatal smoking exposure on psychiatric morbidity and use of psychotropic medication were studied in a cohort of children born from 1987–1989 in Finland (n = 175,869, of which 15.3% were exposed). The data used were obtained from population-based longitudinal registers from the National Institute of Health and Welfare, the Statistics Finland, and the Finnish Social Insurance Institution. Results: Smoking rates during pregnancy differed considerably between the countries. Smoking rates were highest among teenagers and women with lower socioeconomic positions. The smoking prevalence was found to be increasing among teenagers in both Finland and Norway. Prenatal smoking exposure was associated with smaller frontal lobe and cerebellar volumes in preterm infants. A clear association was found between prenatal smoking exposure and psychiatric morbidity treated with specialized hospital care and the use of various psychotropic medications. Conclusions: Prenatal smoking exposure had adverse effects on fetal brain development. These effects might explain part of the association found between smoking exposure and psychiatric problems in later life. Our study suggests that prenatal smoking exposure is linked with both mild and severe psychiatric problems. This study emphasizes the importance of efforts to reduce smoking during pregnancy.
Resumo:
Background: Maternal diabetes affects many fetal organ systems, including the vasculature and the lungs. The offspring of diabetic mothers have respiratory adaptation problems after birth. The mechanisms are multifactorial and the effects are prolonged during the postnatal period. An increasing incidence of diabetic pregnancies accentuates the importance of identifying the pathological mechanisms, which cause the metabolic and genetic changes that occur in offspring, born to diabetic mothers. Aims and methods: The aim of this thesis was to determine changes both in human umbilical cord exposed to maternal type 1 diabetes and in neonatal rat lungs after streptozotocin-induced maternal hyperglycemia, during pregnancy. Rat lungs were used as a model for the potential disease mechanisms. Gene expression alterations were determined in human umbilical cords at birth and in rat pup lungs at two week of age. During the first two postnatal weeks, rat lung development was studied morphologically and histologically. Further, the effect of postnatal hyperoxia on hyperglycemia-primed rat lungs was investigated at one week of age to mimic the clinical situation of supplemental oxygen treatment. Results: In the umbilical cord, maternal diabetes had a major negative effect on the expression of genes involved in blood vessel development. The genes regulating vascular tone were also affected. In neonatal rat lungs, intrauterine hyperglycemia had a prolonged effect on gene expression during late alveolarization. The most affected pathway was the upregulation of extracellular matrix proteins. Newborn rat lungs exposed to intrauterine hyperglycemia had thinner saccular walls without changes in airspace size, a smaller relative lung weight and lung total tissue area, and increased cellular apoptosis and proliferation compared to control lungs, possibly reflecting an aberrant maturational adaptation. At one and two weeks of age, cell proliferation and secondary crest formation were accelerated in hyperglycemia-exposed lungs. Postnatal hyperoxic exposure, alone caused arrested alveolarization with thin-walled and enlarged alveoli. In contrast, the dual exposure of intrauterine hyperglycemia and postnatal hyperoxia resulted in the phenotype of thick septa together with arrested alveolarization and decreased number of small pulmonary arteries. Conclusions: Maternal diabetic environment seems to alter the umbilical cord gene expression profile of the regulation of vascular development and function. Fetal hyperglycemia may additionally affect the genetic regulation of the postnatal lung development and may actually induce prolonged structural alterations in neonatal lungs together with a modifying effect on the deleterious pulmonary exposure of postnatal hyperoxia. This, combined with the novel human umbilical cord gene data could serve as stepping stones for future therapies to curb developmental aberrations.
Resumo:
Chronic lung diseases, specifically bronchopulmonary dysplasia (BPD), are still causing mortality and morbidity amongst newborn infants. High protease activity has been suggested to have a deleterious role in oxygen-induced lung injuries. Cathepsin K (CatK) is a potent protease found in fetal lungs, degrading collagen and elastin. We hypothesized that CatK may be an important modulator of chronic lung injury in newborn infants and neonatal mice. First we measured CatK protein levels in repeated tracheal aspirate fluid samples from 13 intubated preterm infants during the first two weeks of life. The amount of CatK at 9-13 days was low in infants developing chronic lung disease. Consequently, we studied CatK mRNA expression in oxygen-exposed wild-type (WT) rats at postnatal day (PN) 14 and found decreased pulmonary mRNA expression of CatK in whole lung samples. Thereafter we demonstrated that CatK deficiency modifies lung development by accelerating the thinning of alveolar walls in newborn mice. In hyperoxia-exposed newborn mice CatK deficiency resulted in increased number of pulmonary foam cells, macrophages and amount of reduced glutathione in lung homogenates indicating intensified pulmonary oxidative stress and worse pulmonary outcome due to CatK deficiency. Conversely, transgenic overexpression of CatK caused slight enlargement of distal airspaces with increased alveolar chord length in room air in neonatal mice. While hyperoxic exposure inhibited alveolarization and resulted in enlarged airspaces in wild-type mice, these changes were significantly milder in CatK overexpressing mice at PN7. Finally, we showed that the expression of macrophage scavenger receptor 2 (MSR2) mRNA was down-regulated in oxygen-exposed CatK-deficient mice analyzed by microarray analysis. Our results demonstrate that CatK seems to participate in normal lung development and its expression is altered during pulmonary injury. In the presence of pulmonary risk factors, like high oxygen exposure, low amount of CatK may contribute to aggravated lung injury while sustained or slightly elevated amount of CatK may even protect the newborn lungs from excessive injury. Besides collagen degrading and antifibrotic function of CatK in the lungs, it is obvious that CatK may affect macrophage activity and modify oxidative stress response. In conclusion, pulmonary proteases, specifically CatK, have distinct roles in lung homeostasis and injury development, and although suggested, broad range inhibition of proteases may not be beneficial in newborn lung injury.