2 resultados para Feedforward control
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.
Centralized Motion Control of a Linear Tooth Belt Drive: Analysis of the Performance and Limitations
Resumo:
A centralized robust position control for an electrical driven tooth belt drive is designed in this doctoral thesis. Both a cascaded control structure and a PID based position controller are discussed. The performance and the limitations of the system are analyzed and design principles for the mechanical structure and the control design are given. These design principles are also suitable for most of the motion control applications, where mechanical resonance frequencies and control loop delays are present. One of the major challenges in the design of a controller for machinery applications is that the values of the parameters in the system model (parameter uncertainty) or the system model it self (non-parametric uncertainty) are seldom known accurately in advance. In this thesis a systematic analysis of the parameter uncertainty of the linear tooth beltdrive model is presented and the effect of the variation of a single parameter on the performance of the total system is shown. The total variation of the model parameters is taken into account in the control design phase using a Quantitative Feedback Theory (QFT). The thesis also introduces a new method to analyze reference feedforward controllers applying the QFT. The performance of the designed controllers is verified by experimentalmeasurements. The measurements confirm the control design principles that are given in this thesis.