3 resultados para Facial Object Based Method
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.
Resumo:
In this thesis, we propose to infer pixel-level labelling in video by utilising only object category information, exploiting the intrinsic structure of video data. Our motivation is the observation that image-level labels are much more easily to be acquired than pixel-level labels, and it is natural to find a link between the image level recognition and pixel level classification in video data, which would transfer learned recognition models from one domain to the other one. To this end, this thesis proposes two domain adaptation approaches to adapt the deep convolutional neural network (CNN) image recognition model trained from labelled image data to the target domain exploiting both semantic evidence learned from CNN, and the intrinsic structures of unlabelled video data. Our proposed approaches explicitly model and compensate for the domain adaptation from the source domain to the target domain which in turn underpins a robust semantic object segmentation method for natural videos. We demonstrate the superior performance of our methods by presenting extensive evaluations on challenging datasets comparing with the state-of-the-art methods.
Resumo:
Cyber security is one of the main topics that are discussed around the world today. The threat is real, and it is unlikely to diminish. People, business, governments, and even armed forces are networked in a way or another. Thus, the cyber threat is also facing military networking. On the other hand, the concept of Network Centric Warfare sets high requirements for military tactical data communications and security. A challenging networking environment and cyber threats force us to consider new approaches to build security on the military communication systems. The purpose of this thesis is to develop a cyber security architecture for military networks, and to evaluate the designed architecture. The architecture is described as a technical functionality. As a new approach, the thesis introduces Cognitive Networks (CN) which are a theoretical concept to build more intelligent, dynamic and even secure communication networks. The cognitive networks are capable of observe the networking environment, make decisions for optimal performance and adapt its system parameter according to the decisions. As a result, the thesis presents a five-layer cyber security architecture that consists of security elements controlled by a cognitive process. The proposed architecture includes the infrastructure, services and application layers that are managed and controlled by the cognitive and management layers. The architecture defines the tasks of the security elements at a functional level without introducing any new protocols or algorithms. For evaluating two separated method were used. The first method is based on the SABSA framework that uses a layered approach to analyze overall security of an organization. The second method was a scenario based method in which a risk severity level is calculated. The evaluation results show that the proposed architecture fulfills the security requirements at least at a high level. However, the evaluation of the proposed architecture proved to be very challenging. Thus, the evaluation results must be considered very critically. The thesis proves the cognitive networks are a promising approach, and they provide lots of benefits when designing a cyber security architecture for the tactical military networks. However, many implementation problems exist, and several details must be considered and studied during the future work.