5 resultados para FULLY STABILIZED ZIRCONIA

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dentistry, yttrium partially stabilized zirconia (ZrO2) has become one of the most attractive ceramic materials for prosthetic applications. The aim of this series of studies was to evaluate whether certain treatments used in the manufacturing process, such as sintering time, color shading or heat treatment of zirconia affect the material properties. Another aim was to evaluate the load-bearing capacity and marginal fit of manually copy-milled custom-made versus prefabricated commercially available zirconia implant abutments. Mechanical properties such as flexural strength and surface microhardness were determined for green-stage milled and sintered yttrium partially stabilized zirconia after different sintering time, coloring process and heat treatments. Scanning electron microscope (SEM) was used for analyzing the possible changes in surface structure of zirconia material after reduced sintering time, coloring and heat treatments. Possible phase change from the tetragonal to the monoclinic phase was evaluated by X-ray diffraction analysis (XRD). The load-bearing capacity of different implant abutments was measured and the fit between abutment and implant replica was examined with SEM. The results of these studies showed that the shorter sintering time or the thermocycling did not affect the strength or surface microhardness of zirconia. Coloring of zirconia decreased strength compared to un-colored control zirconia, and some of the colored zirconia specimens also showed a decrease in surface microhardness. Coloring also affected the dimensions of zirconia. Significantly decreased shrinkage was found for colored zirconia specimens during sintering. Heat treatment of zirconia did not seem to affect materials’ mechanical properties but when a thin coating of wash and glaze porcelain was fired on the tensile side of the disc the flexural strength decreased significantly. Furthermore, it was found that thermocycling increased the monoclinic phase on the surface of the zirconia. Color shading or heat treatment did not seem to affect phase transformation but small monoclinic peaks were detected on the surface of the heat treated specimens with a thin coating of wash and glaze porcelain on the opposite side. Custom-made zirconia abutments showed comparable load-bearing capacity to the prefabricated commercially available zirconia abutments. However, the fit of the custom-made abutments was less satisfactory than that of the commercially available abutments. These studies suggest that zirconia is a durable material and other treatments than color shading used in the manufacturing process of zirconia bulk material does not affect the material’s strength. The decrease in strength and dimensional changes after color shading needs to be taken into account when fabricating zirconia substructures for fixed dental prostheses. Manually copy-milled custom-made abutments have acceptable load-bearing capacity but the marginal accuracy has to be evaluated carefully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dental oxide ceramics have been inspired by their biocompability and mechanical properties which have made durable all-ceramic structures possible. Clinical longevity of the prosthetic structures is dependent on effective bonding with luting cements. As the initial shear bond strength values can be comparable with several materials and procedures, long-term durability is affected by ageing. Aims of the current study were: to measure the shear bond strength of resin composite-to-ceramics and to evaluate the longevity of the bond; to analyze factors affecting the bond, with special emphasis on: the form of silicatization of the ceramic surface; form of silanization; type of resin primer and the effect of the type of the resin composite luting cement; the effect of ageing in water was studied regarding its effect to the endurance of the bond. Ceramic substrates were alumina and yttrium stabilized zirconia. Ceramic conditioning methods included tribochemical silicatization and use of two silane couplings agents. A commercial silane primer was used as a control silane. Various combinations of conditioning methods, primers and resin cements were tested. Bond strengths were measured by shear bond strength method. The longevity of the bond was generally studied by thermocycling the materials in water. Additionally, in one of the studies thermal cycling was compared with long-term water storaging. Results were analysed statistically with ANOVA and Weibull analysis. Tribochemical treatment utilizing air pressure of 150 kPa resulted shear bond strengths of 11.2 MPa to 18.4 MPa and air pressure of 450 kPa 18.2 MPa to 30.5 MPa, respectively. Thermocycling of 8000 cycles or four years water storaging both decreased shear bond strength values to a range of 3.8 MPa to 7.2 MPa whereas initial situation varied from 16.8. Mpa to 23.0 MPa. The silane used in studies had no statistical significance. The use of primers without 10-MDP resulted spontaneous debonding during thermocycling or shear bond strengths below 5 MPa. As conclusion, the results showed superior long-term bonding with primers containing 10-MDP. Silicatization with silanizing showed improved initial shear bond strength values which considerably decreased with ageing in water. Thermal cycling and water storing for up to four years played the major role in reduction of bond strength, which could be due to thermal fatigue of the bonding interface and hydrolytic degradation of the silane coupled interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkimuksen tavoitteena oli selvittää bakteerien kiinnittymistä ja bakteeribiofilmin muodostumista implanttimateriaalien pinnalla. Monoliittisen zirkonian ja lasikeramien käyttö implanttikruunujen materiaaleina kasvaa jatkuvasti. Zirkoniaa käytetään myös abutmenttien materiaalina esteettisillä alueilla. Tällä hetkellä on vain vähän tutkimustietoa näiden implanttikruunumateriaalien sekä implanttikruunujen sementoimiseen käytetyn sementin pinnalla tapahtuvasta bakteeriadheesiosta ja biofilmin muodostumisesta. Bakteerien adheesiota ja biofilmin muodistumista tutkittiin neljän eri materiaalin pinnalla. Tutkimuksessa käytetyt materiaalit olivat: (1) Litiumdisilikaatti (LDS; IPS e.max CAD, Ivoclar Vivadent,kontrolli), (2) Kokonaan stabiloitu zirkonia (FSZ; Prettau Anterior, Zirkonzahn), (3) Osittain stabiloitu zirkonia (PSZ; Katana, Noritake), ja (4) Kaksoiskovetteinen sementti (DCC; Multilink hybrid abutment cement, Ivoclar Vivadent). Kaikki tutkimuksessa käytetyt materiaalit valmisteltiin ja kiillotettiin valmistajien ohjeiden mukaisesti Tutkittavat pinnat inkuboitiin Streptococcus mutans-suspensiossa +37°C:ssä asteessa. Bakteeriadheesiotestissä inkubointiaika oli 30 minuuttia ja biofilmitestissä vastaava aika oli 24 tuntia. Materiaalien pintoja tarkasteltiin myös elektronimikroskooppia käyttäen. Tutkimuksessa todettiin, että bakteeriadheesiossa oli eroja eri materiaalien välillä. Biofilmin. muodostumisessa ei todettu tilastollisesti merkittäviä eroja tutkittavien materiaalien välillä.