6 resultados para FUCUS-SERRATUS
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Phlorotannins are the least studied group of tannins and are found only in brown algae. Hitherto the roles of phlorotannins, e.g. in plant-herbivore interactions, have been studied by quantifying the total contents of the soluble phlorotannins with a variety of methods. Little attention has been given to either quantitative variation in cell-wall-bound and exuded phlorotannins or to qualitative variation in individual compounds. A quantification procedure was developed to measure the amount of cell-wall-bound phlorotannins. The quantification of soluble phlorotannins was adjusted for both large- and small-scale samples and used to estimate the amounts of exuded phlorotannins using bladder wrack (Fucus vesiculosus) as a model species. In addition, separation of individual soluble phlorotannins to produce a phlorotannin profile from the phenolic crude extract was achieved by high-performance liquid chromatography (HPLC). Along with these methodological studies, attention was focused on the factors in the procedure which generated variation in the yield of phlorotannins. The objective was to enhance the efficiency of the sample preparation procedure. To resolve the problem of rapid oxidation of phlorotannins in HPLC analyses, ascorbic acid was added to the extractant. The widely used colourimetric method was found to produce a variation in the yield that was dependent upon the pH and concentration of the sample. Using these developed, adjusted and modified methods, the phenotypic plasticity of phlorotannins was studied with respect to nutrient availability and herbivory. An increase in nutrients decreased the total amount of soluble phlorotannins but did not affect the cell-wall-bound phlorotannins, the exudation of phlorotannins or the phlorotannin profile achieved with HPLC. The presence of the snail Thedoxus fluviatilis on the thallus induced production of soluble phlorotannins, and grazing by the herbivorous isopod Idotea baltica increased the exudation of phlorotannins. To study whether the among-population variations in phlorotannin contents arise from the genetic divergence or from the plastic response of algae, or both, algae from separate populations were reared in a common garden. Genetic variation among local populations was found in both the phlorotannin profile and the content of total phlorotannins. Phlorotannins were also genetically variable within populations. This suggests that local algal populations have diverged in their contents of phlorotannins, and that they may respond to natural selection and evolve both quantitatively and qualitatively.
Resumo:
The objective of my thesis is to assess mechanisms of ecological community control in macroalgal communities in the Baltic Sea. In the top-down model, predatory fish feed on invertebrate mesograzers, releasing algae partly from grazing pressure. Such a reciprocal relationship is called trophic cascade. In the bottom-up model, nutrients increase biomass in the food chain. The nutrients are first assimilated by algae and, via food chain, increase also abundance of grazers and predators. Previous studies on oceanic shores have described these two regulative mechanisms in the grazer - alga link, but how they interact in the trophic cascades from fish to algae is still inadequately known. Because the top-down and bottom-up mechanisms are predicted to depend on environmental disturbances, such as wave stress and light, I have studied these models at two distinct water depths. There are five factorial field experiments behind the thesis, which were all conducted in the Finnish Archipelago Sea. In all the experiments, I studied macroalgal colonization - either density, filament length or biomass - on submerged colonization substrates. By excluding predatory fish and mesograzers from the algal communities, the studies compared the strength of the top-down control to natural algal communities. A part of the experimental units were, in addition, exposed to enriched nitrogen and phosphorus concentrations, which enabled testing of bottom-up control. These two models of community control were further investigated in shallow (<1 m) and deep (ca. 3 m) water. Moreover, the control mechanisms were also expected to depend on grazer species. Therefore different grazer species were enclosed into experimental units and their impacts on macroalgal communities were followed specifically. The community control in the Baltic rocky shores was found to follow theoretical predictions, which have not been confirmed by field studies before. Predatory fish limited grazing impact, which was seen as denser algal communities and longer algal filaments. Nutrient enrichment increased density and filament length of annual algae and, thus, changed the species composition of the algal community. The perennial alga Fucus vesiculosusA and the red alga Ceramium tenuicorne suffered from the increased nutrient availabilities. The enriched nutrient conditions led to denser grazer fauna, thereby causing strong top-down control over both the annual and perennial macroalgae. The strength of the top-down control seemed to depend on the density and diversity of grazers and predators as well as on the species composition of macroalgal assemblages. The nutrient enrichment led to, however, weaker limiting impact of predatory fish on grazer fauna, because fish stocks did not respond as quickly to enhanced resources in the environment as the invertebrate fauna. According to environmental stress model, environmental disturbances weaken the top-down control. For example, on a wave-exposed shore, wave stress causes more stress to animals close to the surface than deeper on the shore. Mesograzers were efficient consumers at both the depths, while predation by fish was weaker in shallow water. Thus, the results supported the environmental stress model, which predicts that environmental disturbance affects stronger the higher a species is in the food chain. This thesis assessed the mechanisms of community control in three-level food chains and did not take into account higher predators. Such predators in the Baltic Sea are, for example, cormorant, seals, white-tailed sea eagle, cod and salmon. All these predatory species were recently or are currently under intensive fishing, hunting and persecution, and their stocks have only recently increased in the region. Therefore, it is possible that future densities of top predators may yet alter the strengths of the controlling mechanisms in the Baltic littoral zone.
Resumo:
Undervattensmiljön i skärgårdarna och de kustnära områdena i norra Östersjön är mångformiga och produktiva. Arternas levnadsmil-jöer styrs bl.a. av bottentyp, exponeringsgrad och ljustillgång. Kunskap och information om undervattensarterna är av stor vikt för en hållbar planering av kust- och havsmiljön. Denna rapport beskriver indelningen av de viktigaste undervattenshabitaten i norra Östersjöns kustvatten samt hur ett naturvärde på dessa miljöer kan uppskattas på basen av de olika ekologiska funktioner som habitatet uppfyller. De mest inflytelserika mänskliga hoten, både små- och storskaliga, som allvarligt kan hota habitatens fortbestånd behandlas också. Habitaten som beskrivs är både av typen hårdbotten och mjukbotten. Hårdbottenssamhällena bildar distinkta bälten från ytan mot bott-nen: trådalgszonen, zonen med stora fleråriga brunalger (Fucus vesiculosus, F. radicans), rödalgszonen och blåmusselzonen (Mytilus edulis/trossulus). Mjukbottensamhällena är uppbyggda kring ålgräs (Zostera marina), andra vattenlevande kärlväxter eller kransalger. En stor del av både de grunda och djupa mjukbottnarna saknar vegetation och samhällena struktureras då av ryggradslösa djur i och på sedi-mentytan. Habitaten har klassificerats och värderats enligt en tvåstegsmodell. Först har habitaten namngivits efter den dominerande arten eller artgruppen som bestämts enligt täckningsgrad. Därefter har varje habitat getts ett värde enligt sin ekologiska betydelse. Naturvärdet är indelat i skalan 1-5. Projektet NANNUT – The Nature and Nurture in the Northern Baltic Sea – har gjort inventeringar av undervattensmiljön på olika håll av kusterna och skärgårdarna i Finland 2010-2011. Målsättningen har varit att utveckla enkla och kostnadseffektiva metoder både för kartering och värdering av undervattenshabitat. Det huvudsakliga undersökningsområdet var förlagt till Raseborgsstad i södra Finland.
Resumo:
Saaristojen ja rannikkoalueiden vedenalainen luonto pohjoisella Itämerellä on monimuotoista ja tuottavaa. Lajien elinympäristöjen erilaisuutta säätelee mm. pohjan laatu, avoimuus ja valonsaanti. Vedenalaislajiston tuntemus on hyvin tärkeää kestävässä rannikko- ja merialueiden suunnittelussa. Tämä raportti kuvailee tärkeimpien pohjoisen Itämeren rannikkovesien vedenalaiselinympäristöjen jaottelun sekä miten näiden ympäristöjen luontoarvoa voidaan luokitella kyseisen ympäristön ekologisten toimintojen perusteella. Myös elinympäristöjen säilymistä uhkaavat ihmisen aiheuttamat laajat ja pienemmät uhat esitellään raportissa. Kuvaillut elinympäristöt edustavat sekä pehmeän että kovan pohjan vedenalaisluontoa. Kovan pohjan elinympäristöt muodostavat erillisiä vyöhykkeitä mentäessä meren pinnasta pohjaan: rihmalevävyöhyke, monivuotisten, suurien ruskolevien vyöhyke (Fucus vesiculosus, F. radicans), punalevävyöhyke ja sinisimpukkavyöhyke (Mytilus edulis/trossulus). Kuvaillut pehmeän pohjan elinympäristöt rakentuvat meriajokkaan (Zostera marina),muiden vedessä elävien putkilokasvien tai näkinpartaislevien ympärille. Suuressa osassa sekä matalista että syvistä pehmeistä pohjista ei ole ollenkaan kasvillisuutta ja silloin eliöyhteiskunnan muodostaa hienoaineksen päällä ja sisällä elävät selkärangattomat eläimet. Elinympäristöt on luokiteltu ja arvotettu kaksiportaisen mallin mukaan. Ensin elinympäristö on nimetty peittävyyden perusteella vallitsevan lajin tai lajiryhmän mukaan. Tämän jälkeen jokaisella elinympäristölle annettiin arvo sen ekologisen tärkeyden perusteella. Luontoarvot on luokiteltu asteikoilla 1-5. NANNUT-hanke (The Nature and Nurture in the Northern Baltic Sea) on tehnyt vedenalaiskartoituksia eri puolilla Suomen rannikkoa ja saaristossa vuosina 2010 – 2011. Tavoitteena on ollut kehittää yksinkertaisia ja kustannustehokkaita menetelmiä sekä vedenalaisluonnon kartoittamiseen että sen arvottamiseen. Pääasiallinen tutkimus alue sijaitsi Raaseporin kunnan alueella Etelä-Suomessa.
Resumo:
Macroalgae are the main primary producers of the temperate rocky shores providing a three-dimensional habitat, food and nursery grounds for many other species. During the past decades, the state of the coastal waters has deteriorated due to increasing human pressures, resulting in dramatic changes in coastal ecosystems, including macroalgal communities. To reverse the deterioration of the European seas, the EU has adopted the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD), aiming at improved status of the coastal waters and the marine environment. Further, the Habitats Directive (HD) calls for the protection of important habitats and species (many of which are marine) and the Maritime Spatial Planning Directive for sustainability in the use of resources and human activities at sea and by the coasts. To efficiently protect important marine habitats and communities, we need knowledge on their spatial distribution. Ecological knowledge is also needed to assess the status of the marine areas by involving biological indicators, as required by the WFD and the MSFD; knowledge on how biota changes with human-induced pressures is essential, but to reliably assess change, we need also to know how biotic communities vary over natural environmental gradients. This is especially important in sea areas such as the Baltic Sea, where the natural environmental gradients create substantial differences in biota between areas. In this thesis, I studied the variation occurring in macroalgal communities across the environmental gradients of the northern Baltic Sea, including eutrophication induced changes. The aim was to produce knowledge to support the reliable use of macroalgae as indicators of ecological status of the marine areas and to test practical metrics that could potentially be used in status assessments. Further, the aim was to develop a methodology for mapping the HD Annex I habitat reefs, using the best available data on geology and bathymetry. The results showed that the large-scale variation in the macroalgal community composition of the northern Baltic Sea is largely driven by salinity and exposure. Exposure is important also on smaller spatial scales, affecting species occurrence, community structure and depth penetration of algae. Consequently, the natural variability complicates the use of macroalgae as indicators of human-induced changes. Of the studied indicators, the number of perennial algal species, the perennial cover, the fraction of annual algae, and the lower limit of occurrence of red and brown perennial algae showed potential as usable indicators of ecological status. However, the cumulated cover of algae, commonly used as an indicator in the fully marine environments, showed low responses to eutrophication in the area. Although the mere occurrence of perennial algae did not show clear indicator potential, a distinct discrepancy in the occurrence of bladderwrack, Fucus vesiculosus, was found between two areas with differing eutrophication history, the Bothnian Sea and the Archipelago Sea. The absence of Fucus from many potential sites in the outer Archipelago Sea is likely due to its inability to recover from its disappearance from the area 30-40 years ago, highlighting the importance of past events in macroalgal occurrence. The methodology presented for mapping the potential distribution and the ecological value of reefs showed, that relatively high accuracy in mapping can be achieved by combining existing available data, and the maps produced serve as valuable background information for more detailed surveys. Taken together, the results of the theses contribute significantly to the knowledge on macroalgal communities of the northern Baltic Sea that can be directly applied in various management contexts.
Resumo:
In marine benthic communities, herbivores consume a considerable proportion of primary producer biomass and, thus, generate selection for the evolution of resistance traits. According to the theory of plant defenses, resistance traits are costly to produce and, consequently, inducible resistance traits are adaptive in conditions of variable herbivory, while in conditions of constant/strong herbivory constitutive resistance traits are selected for. The evolution of resistance plasticity may be constrained by the costs of resistance or lack of genetic variation in resistance. Furthermore, resource allocation to induced resistance may be affected by higher trophic levels preying on herbivores. I studied the resistance to herbivory of a foundation species, the brown alga Fucus vesiculosus. By using factorial field experiments, I explored the effects of herbivores and fish predators on growth and resistance of the alga in two seasons. I explored genetic variation in and allocation costs of resistance traits as well as their chemical basis and their effects on herbivore performance. Using a field experiment I tested if induced resistance spreads via water-borne cues from one individual to another in relevant ecological conditions. I found that in the northern Baltic Sea F. vesiculosus communities, strength of three trophic interactions strongly vary among seasons. The highly synchronized summer reproduction of herbivores promoted their escape from the top-down control of fish predators in autumn. This resulted into large grazing losses in algal stands. In spring, herbivore densities were low and regulated by fish, which, thus,enhanced algal growth. The resistance of algae to herbivory increased with an increase in constitutive phlorotannin content. Furthermore, individuals adopted induced resistance when grazed and when exposed to water-borne cues originating from grazing of conspecific algae both in the laboratory and in field conditions. Induced resistance was adopted to a lesser extent in the presence of fish predators. The results in this thesis indicate that inducible resistance in F. vesiculosus is an adaptation to varying herbivory in the northern Baltic Sea. The costs of resistance and strong seasonality of herbivory have likely contributed to the evolution of this defense strategy. My findings also show that fish predators have positive cascading effects on F. vesiculosus which arise via reduced herbivory but possibly also through reduced resource allocation to resistance. I further found evidence that the spread of resistance via water-borne cues also occurs in ecologically realistic conditions in natural marine sublittoral. Thus, water-borne induction may enable macroalgae to cope with the strong grazing pressure characteristic of marine benthic communities. The results presented here show that seasonality can have pronounced effects on the biotic interactions in marine benthic communities and thereafter influence the evolution of resistance traits in primary producers.