5 resultados para Experimental model

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence to support a significant role for chronic non-bacterial, prostatic inflammation in the development of human voiding dysfunction and prostate cancer. Their increased prevalence with age suggests that the decrease of testosterone concentration and/or the ratio of testosterone-to-estradiol in serum may have a role in their development. The main objective of this study was to explore prostatic inflammation and its relationship with voiding dysfunction and prostate carcinogenesis by developing an experimental model. A novel selective estrogen receptor modulator (SERM), fispemifene, was tested for the prevention and treatment of prostatic inflammation in this model. Combined treatment of adult Noble rats with testosterone and estradiol for 3 to 6 weeks induced gradually developing prostatic inflammation in the dorsolateral prostatic lobes. Inflammatory cells, mainly T-lymphocytes, were first seen around capillaries. Thereafter, the lymphocytes migrated into the stroma and into periglandular space. When the treatment time was extended to 13 weeks, the number of inflamed acini increased. Urodynamical recordings indicated voiding dysfunction. When the animals had an above normal testosterone and estradiol concentrations but still had a decreased testosterone-to-estradiol ratio in serum, they developed obstructive voiding. Furthermore, they developed precancerous lesions and prostate cancers in the ducts of the dorsolateral prostatic lobes. Interestingly, inflammatory infiltrates were observed adjacent to precancerous lesions but not in the adjacency of adenocarcinomas suggesting that inflammation has a role in the early stages of prostate carcinogenesis. Fispemifene, a novel SERM tested in this experimental model, showed anti-inflammatory action by attenuating the number of inflamed acini in the dorsolateral prostate. Fispemifene exhibited also antiestrogenic properties by decreasing expression of estrogen-induced biomarkers in the acinar epithelium. These findings suggest that SERMs could be considered as a new therapeutic possibility in the prevention and in the treatment of chronic prostatic inflammation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is an abundant neurotransmitter in the brain and sympathetic nervous system (SNS). Hypothalamic NPY is known to be a key player in food intake and energy expenditure. NPY’s role in cardiovascular regulation has also been shown. In humans, a Leucine 7 to Proline 7 single nucleotide polymorphism (p.L7P) in the signal peptide of the NPY gene has been associated with traits of metabolic syndrome. The p.L7P subjects also show increased stress-related release of NPY, which suggests that more NPY is produced and released from SNS. The main objective of this study was to create a novel mouse model with noradrenergic cell-targeted overexpression of NPY, and to characterize the metabolic and vascular phenotype of this model. The mouse model was named OE-NPYDBH mouse. Overexpression of NPY in SNS and brain noradrenergic neurons led to increased adiposity without significant weight gain or increased food intake. The mice showed lipid accumulation in the liver at young age, which together with adiposity led to impaired glucose tolerance and hyperinsulinemia with age. The mice displayed stress-related increased mean arterial blood pressure, increased plasma levels of catecholamines and enhanced SNS activity measured by GDP binding activity to brown adipose tissue mitochondria. Sexual dimorphism in NPY secretion pattern in response to stress was also seen. In an experimental model of vascular injury, the OE-NPYDBH mice developed more pronounced neointima formation compared with wildtype controls. These results together with the clinical data indicate that NPY in noradrenergic cells plays an important role in the pathogenesis of metabolic syndrome and related diseases. Furthermore, new insights on the role of the extrahypothalamic NPY in the process have been obtained. The OE-NPYDBH model provides an important tool for further stress and metabolic syndrome-related studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rotational speed of high-speed electric machines is over 15 000 rpm. These machines are compact in size when compared to the power rate. As a consequence, the heat fluxes are at a high level and the adequacy of cooling becomes an important design criterion. In the high-speed machines, the air gap between the stator and rotor is a narrow flow channel. The cooling air is produced with a fan and the flow is then directed to the air gap. The flow in the gap does not provide sufficient cooling for the stator end windings, and therefore additional cooling is required. This study investigates the heat transfer and flow fields around the coil end windings when cooling jets are used. As a result, an innovative and new assembly is introduced for the cooling jets, with the benefits of a reduced amount of hot spots, a lower pressure drop, and hence a lower power need for the cooling fan. The gained information can also be applied to improve the cooling of electric machines through geometry modifications. The objective of the research is to determine the locations of the hot spots and to find out induced pressure losses with different jet alternatives. Several possibilities to arrange the extra cooling are considered. In the suggested approach cooling is provided by using a row of air jets. The air jets have three main tasks: to cool the coils effectively by direct impingement jets, to increase and cool down the flow that enters the coil end space through the air gap, and to ensure the correct distribution of the flow by forming an air curtain with additional jets. One important aim of this study is the arrangement of cooling jets in such manner that hot spots can be avoided to wide extent. This enables higher power density in high-speed motors. This cooling system can also be applied to the ordinary electric machines when efficient cooling is needed. The numerical calculations have been performed using a commercial Computational Fluid Dynamics software. Two geometries have been generated: cylindrical for the studied machine and Cartesian for the experimental model. The main parameters include the positions, arrangements and number of jets, the jet diameters, and the jet velocities. The investigated cases have been tested with two widely used turbulence models and using a computational grid of over 500 000 cells. The experimental tests have been made by using a simplified model for the end winding space with cooling jets. In the experiments, an emphasis has been given to flow visualisation. The computational analysis shows good agreement with the experimental results. Modelling of the cooling jet arrangement enables also a better understanding of the complex system of heat transfer at end winding space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug transporting membrane proteins are expressed in various human tissues and blood-tissue barriers, regulating the transfer of drugs, toxins and endogenous compounds into or out of the cells. Various in vitro and animal experiments suggest that P-glycoprotein (P-gp) forms a functional barrier between maternal and fetal blood circulation in the placenta thereby protecting the fetus from exposure to xenobiotics during pregnancy. The multidrug resistance-associated protein 1 (MRP1) is a relatively less studied transporter protein in the human placenta. The aim of this study series was to study the role of placental transporters, apical P-gp and basal MRP1, using saquinavir as a probe drug, and to study transfer of quetiapine and the role of P-gp in its transfer in the dually perfused human placenta/cotyledon. Furthermore, two ABCB1 (encoding P-gp) polymorphisms (c.3435C>T, p.Ile1145Ile and c.2677G>T/A, p.Ala893Ser/Thr) were studied to determine their impact on P-gp protein expression level and on the transfer of the study drugs. Also, the influence of the P-gp protein expression level on the transfer of the study drugs was addressed. Because P-gp and MRP1 are ATP-dependent drug-efflux pumps, it was studied whether exogenous ATP is needed for the function of ATP-dependent transporter in the present experimental model. The present results indicated that the addition of exogenous ATP was not necessary for transporter function in the perfused human placental cotyledon. Saquinavir and quetiapine were both found to cross the human placenta; transplacental transfer (TPTAUC %) for saquinavir was <0.5% and for quetiapine 3.7%. Pharmacologic blocking of P-gp led to disruption of the blood-placental barrier (BPB) and increased the placental transfer of P-gp substrate, saquinavir, into the fetal circulation by 6- to 8-fold. In reversed perfusions P-gp, MRP1 and possibly OATP2B1 had a negligible role in the fetal-to-maternal transfer of saquinavir. The TPTAUC % of saquinavir was about 100-fold greater from the fetal side to the maternal side compared with the maternal-to-fetal transfer. P-gp activity is not likely to modify the placental transfer of quetiapine. Higher P-gp protein expression levels were associated with the variant allele 3435T, but no correlation was found between the TPTAUC % of saquinavir and placental P-gp protein expression. The present results indicate that P-gp activity drastically affects the fetal exposure to saquinavir, and suggest that pharmacological blockade of the P-gp activity during pregnancy may pose an increased risk for adverse fetal outcome. The blockade of P-gp activity could be used in purpose to obtain higher drug concentration to the fetal side, for example, in prevention (to decrease virus transfer to fetal side) or in treating sick fetus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

T helper (Th) cells are vital regulators of the adaptive immune system. When activated by presentation of cognate antigen, Th cells demonstrate capacity to differentiate into functionally distinct effector cell subsets. The Th2 subset is required for protection against extracellular parasites, such as helminths, but is also closely linked to pathogenesis of asthma and allergies. The intracellular molecular signal transduction pathways regulating T helper cell subset differentiation are still incompletely known. Moreover, great majority of studies regarding Th2 differentiation have been conducted with mice models, while studies with human cells have been fewer in comparison. The goal of this thesis was to characterize molecular mechanisms promoting the development of Th2 phenotype, focusing specifically on human umbilical cord blood T cells as an experimental model. These primary cells, activated and differentiated to Th2 cells in vitro, were investigated by complementary system-wide approaches, targeting levels of mRNA, proteins, and lipid molecules. Specifically, the results indicated IL4-regulated recruitment of nuclear protein, and described novel components of the Th2-promoting STAT6 enhanceosome complex. Furthermore, the development of the activated effector cell phenotype was found to correlate with remodeling of the cellular lipidome. These findings will hopefully advance the understanding of human Th2 cell lineage commitment and development of Th2-associated disease states.