16 resultados para Excitation spectrum
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Fluorescence resonance energy transfer (FRET) is a non-radiative energy transfer from a fluorescent donor molecule to an appropriate acceptor molecule and a commonly used technique to develop homogeneous assays. If the emission spectrum of the donor overlaps with the excitation spectrum of the acceptor, FRET might occur. As a consequence, the emission of the donor is decreased and the emission of the acceptor (if fluorescent) increased. Furthermore, the distance between the donor and the acceptor needs to be short enough, commonly 10-100 Å. Typically, the close proximity between the donor and the acceptor is achieved via bioaffinity interactions e.g. antibody binding antigen. Large variety of donors and acceptors exist. The selection of the donor/acceptor pair should be done not only based on the requirements of FRET but also the performance expectancies and the objectives of the application should be considered. In this study, the exceptional fluorescence properties of the lanthanide chelates were employed to develop two novel homogeneous immunoassays: a non-competitive hapten (estradiol) assay based on a single binder and a dual-parametric total and free PSA assay. In addition, the quenching efficiencies and energy transfer properties of various donor/acceptor pairs were studied. The applied donors were either europium(III) or terbium(III) chelates; whereas several organic dyes (both fluorescent and quenchers) acted as acceptors. First, it was shown that if the interaction between the donor/acceptor complexes is of high quality (e.g. biotin-streptavidin) the fluorescence of the europium(III) chelate could be quenched rather efficiently. Furthermore, the quenching based homogeneous non-competitive assay for estradiol had significantly better sensitivity (~67 times) than a corresponding homogeneous competitive assay using the same assay components. Second, if the acceptors were chosen to emit at the emission minima of the terbium(III) chelate, several acceptor emissions could be measured simultaneously without significant cross-talk from other acceptors. Based on these results, the appropriate acceptors were chosen for the dual-parameter assay. The developed homogeneous dual-parameter assay was able to measure both total and free PSA simultaneously using a simple mix and measure protocol. Correlation of this assay to a heterogeneous single parameter assay was excellent (above 0.99 for both) when spiked human plasma samples were used. However, due to the interference of the sample material, the obtained concentrations were slightly lower with the homogeneous than the heterogeneous assay, especially for the free PSA. To conclude, in this work two novel immunoassay principles were developed, which both are adaptable to other analytes. However, the hapten assay requires a rather good antibody with low dissociation rate and high affinity; whereas the dual-parameter assay principle is applicable whenever two immunometric complexes can form simultaneously, provided that the requirements of FRET are fulfilled.
Resumo:
Photosystem II (PSII) of oxygenic photosynthesis is susceptible to photoinhibition. Photoinhibition is defined as light induced damage resulting in turnover of the D1 protein subunit of the reaction center of PSII. Both visible and ultraviolet (UV) light cause photoinhibition. Photoinhibition induced by UV light damages the oxygen evolving complex (OEC) via absorption of UV photons by the Mn ion(s) of OEC. Under visible light, most of the earlier hypotheses assume that photoinhibition occurs when the rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in photosynthesis. However, photoinhibition occurs at all light intensities with the same efficiency per photon. The aim of my thesis work was to build a model of photoinhibition that fits the experimental features of photoinhibition. I studied the role of electron transfer reactions of PSII in photoinhibition and found that changing the electron transfer rate had only minor influence on photoinhibition if light intensity was kept constant. Furthermore, quenching of antenna excitations protected less efficiently than it would protect if antenna chlorophylls were the only photoreceptors of photoinhibition. To identify photoreceptors of photoinhibition, I measured the action spectrum of photoinhibition. The action spectrum showed resemblance to the absorption spectra of Mn model compounds suggesting that the Mn cluster of OEC acts as a photoreceptor of photoinhibition under visible light, too. The role of Mn in photoinhibition was further supported by experiments showing that during photoinhibition OEC is damaged before electron transfer activity at the acceptor side of PSII is lost. Mn enzymes were found to be photosensitive under visible and UV light indicating that Mn-containing compounds, including OEC, are capable of functioning as photosensitizers both in visible and UV light. The experimental results above led to the Mn hypothesis of the mechanism of continuous-light-induced photoinhibition. According to the Mn hypothesis, excitation of Mn of OEC results in inhibition of electron donation from OEC to the oxidized primary donor P680+ both under UV and visible light. P680 is oxidized by photons absorbed by chlorophyll, and if not reduced by OEC, P680+ may cause harmful oxidation of other PSII components. Photoinhibition was also induced with intense laser pulses and it was found that the photoinhibitory efficiency increased in proportion to the square of pulse intensity suggesting that laser-pulse-induced photoinhibition is a two-photon reaction. I further developed the Mn hypothesis suggesting that the initial event in photoinhibition under both continuous and pulsed light is the same: Mn excitation that leads to the inhibition of electron donation from OEC to P680+. Under laser-pulse-illumination, another Mn-mediated inhibitory photoreaction occurs within the duration of the same pulse, whereas under continuous light, secondary damage is chlorophyll mediated. A mathematical model based on the Mn hypothesis was found to explain photoinhibition under continuous light, under flash illumination and under the combination of these two.
Resumo:
Coherent anti-Stokes Raman scattering is the powerful method of laser spectroscopy in which significant successes are achieved. However, the non-linear nature of CARS complicates the analysis of the received spectra. The objective of this Thesis is to develop a new phase retrieval algorithm for CARS. It utilizes the maximum entropy method and the new wavelet approach for spectroscopic background correction of a phase function. The method was developed to be easily automated and used on a large number of spectra of different substances.. The algorithm was successfully tested on experimental data.
Role of the environmental spectrum in the decoherence and dissipation of a quantum Brownian particle
Resumo:
Because of the heavily overlapping symptoms, pathogen-specific diagnosis and treatment of infectious diseases is difficult based on clinical symptoms alone. Therefore, patients are often treated empirically. More efficient treatment and management of infectious diseases would require rapid point-of-care compatible in vitro diagnostic methods. However, current point-of-care methods are unsatisfactory in performance and in cost structure. The lack of pointof- care methods results in unnecessary use of antibiotics, suboptimal use of virus-specific drugs, and compromised patient care. In this thesis, the applicability of a two-photon excitation fluorometry is evaluated as a tool for rapid detection of infectious diseases. New separation-free immunoassay methodologies were developed and validated for the following application areas: general inflammation markers, pathogen-specific antibodies, pathogen-specific antigens, and antimicrobial susceptibility testing. In addition, dry-reagent methodology and nanoparticulate tracers are introduced in context to the technique. The results show that the new assay technique is a versatile tool for rapid detection of infectious diseases in many different application areas. One particularly attractive area is rapid multianalyte testing of respiratory infections, where the technique was shown to allow simple assay protocols and comparable performance to the state-of-the-art laboratory methods. If implemented in clinical diagnostic use, the new methods could improve diagnostic testing routines, especially in rapid testing of respiratory tract infections.
Resumo:
Hamstring muscle injuries and tendon disorders are common, especially in sports. They can be severe and difficult to treat, often resulting in impaired athletic performance and long rehabilitation times. Previous studies considering treatment of these problems are scarce. The current study was designed to investigate the effect of surgery on different types of hamstring muscle injuries and on proximal hamstring tendinopathy. In addition, we wanted to study the typical histopathological findings relating to proximal hamstring tendinopathy. In the study of complete (all three muscles torn) proximal hamstring avulsions (41 patients), our results showed that early operative treatment gives significantly better results than late surgery, and is therefore recommended. Despite this, considerable improvement of symptoms could also be achieved in chronic cases. In the study of partial (one or two muscles torn) proximal hamstring tears (47 patients), we observed that these injuries can cause significant functional deficit and impaired performance in athletes. The main finding was that after surgical repair most of the patients were able to return to their pre-injury level of sports. In the study of distal hamstring tears (18 patients), the results showed that surgical treatment had a good effect in the majority of these cases. In proximal hamstring tendinopathy, the main problem is pain which limits sports. In this study (90 patients), we found that after unsuccessful conservative treatment, surgery was a good treatment option resulting in full return to sports in most cases. In tendinopathic hamstring tendons, the morphological changes of tendinosis were largely identical to those previously described in other common (e.g. Achilles and patellar) tendinopathies. In chronic proximal hamstring avulsions, and also in reoperations, a large defect between distally retracted tendons and the ischial tuberosity may occasionally prevent anatomic reinsertion. We have described a reconstruction method using fascia lata autograft augmentation to be used in these most challenging repairs. This technique was utilized in the treatment of five patients, with encouraging results.
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy is rapidly developing into a unique microscopic tool in biophysics, biology and the material sciences. The nonlinear nature of CARS spectroscopy complicates the analysis of the received spectra. There were developed mathematical methods for signal processing and for calculations spectra. Fourier self-deconvolution is a special high pass FFT filter which synthetically narrows the effective trace bandwidth features. As Fourier self-deconvolution can effectively reduce the noise, which may be at a higher spatial frequency than the peaks, without losing peak resolution. The idea of the work is to experiment the possibility of using wavelet decomposition in spectroscopic for background and noise removal, and Fourier transformation for linenarrowing.
Resumo:
Since the introduction of antibiotic agents, the amount and prevalence of Beta-lactam resistant enterobacteria has become an increasing problem. Many enterobacteria are opportunistic pathogens that easily acquire resistance mechanisms and genes, which make the situation menacing. These bacteria have acquired resistance and can hydrolyse extended spectrum cephalosporins and penicillins by producing enzymes called extended-spectrum Beta-lactamases (ESBLs). ESBL-producing bacteria are most commonly found in the gastro-intestinal tract of colonised patients. These resistant strains can be found in both health-care associated and community-acquired isolates. The detection and treatment of infections caused by bacteria producing ESBLs are problematic. This study investigated the genetic basis of extended-spectrum Beta-lactamases in Enterobacteriaceae, especially in Escherichia coli and Klebsiella pneumoniae isolates. A total of 994 Finnish Enterobacteriaceae strains, collected at 26 hospital laboratories, during 2000 and 2007 were analysed. For the genetic basis studies, PCR, sequencing and pyrosequencing methods were optimised. In addition, international standard methods, the agar dilution and disk diffusion methods were performed for the resistance studies, and the susceptibility of these strains was tested for antimicrobial agents that are used for treating patients. The genetic analysis showed that blaCTX-M was the most prevalent gene among the E. coli isolates, while blaSHV-12 was the most common Beta-lactamase gene in K. pneumoniae. The susceptibility testing results showed that about 60% of the strains were multidrug resistant. The prevalence of ESBL-producing isolates in Finland has been increasing since 2000. However, the situation in Finland is still much better than in many other European countries.
Resumo:
Lukuisissa teollisuussovelluksissa materiaalien, kuten paperin ja teräslevyjen, muokkaamiseen käytettävät pyörivät nippitelat kärsivät aina erilaisten herätteiden synnyttämistä mekaanisista värähtelyistä, jotka voivat aiheuttaa virheitä valmistettaviin tuotteisiin. Tässä työssä tutkittiin viskoelastisia polymeerejä ja polymeeripinnoitteen nipilliseen telasysteemiin synnyttämiä haitallisia itseherätteisiä värähtelyjä. Työn polymeerejä käsittelevässä kirjallisuusosassa luotiin katsaus amorfisten polymeerien fysikaalisiin ominaisuuksiin. Kokeellisessa osuudessa tutkittiin tarkemmin kahden amorfisen telapinnoitepolymeerin termoreologisia ja mekaanisia ominaisuuksia suoritettujen DMTA-mittausten perusteella. Sovittamalla toisen polymeerin master-käyrään yleistetty lineaarisen standardiaineen malli saatiin selville polymeerin mekaaniset parametrit ja approksimaatio sen relaksaatiospektrille. Telapinnoitteen nipilliseen systeemiin synnyttämiä itseherätteisiä värähtelyjä ja niiden seurauksia tarkasteltiin kahdelle telalle ja polymeeripinnoitteelle kehitetyn analyyttisen mallin ja numeeristen laskujen avulla. Pinnoite mallinnettiin lineaarisen standardiaineen mukaisesti. Telasysteemin parametrit määritettiin DMTA-mittaustuloksista ja systeemiä vastaavasta koelaitteesta kokeellisella moodianalyysillä ja elementtimenetelmällä. Numeerisesta stabiilisuusanalyysistä ja liikeyhtälöiden integroinneista saadut tulokset kertovat telapinnoitteen aaltomaisista deformaatiomuodoista ja niiden synnyttämistä taajuusalueittain esiintyvistä epästabiileista värähtelyistä. Telasysteemi on epästabiili pinnoitedeformaatiokuvion systeemiin aiheuttaman herätevoiman taajuuden ollessa lähellä systeemin korkeampaa ominaistaajuutta. Numeerisista tuloksista voitiin ennustaa nopean ja hitaan barringin olemassaolo.
Resumo:
Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor’s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque reference. This method is however parameter sensitive and requires a safety margin between the theoretical torque maximum and the actual torque limit. The DTC modulation principle allows however a direct load angle adjustment without any current control. In this work a direct load angle control method has been developed. The method keeps the drive stabile and allows the maximal utilisation of the drive without a safety margin in the torque limitation.
Resumo:
One of the targets of the climate and energy package of the European Union is to increase the energy efficiency in order to achieve a 20 percent reduction in primary energy use compared with the projected level by 2020. The energy efficiency can be improved for example by increasing the rotational speed of large electrical drives, because this enables the elimination of gearboxes leading to a compact design with lower losses. The rotational speeds of traditional bearings, such as roller bearings, are limited by mechanical friction. Active magnetic bearings (AMBs), on the other hand, allow very high rotational speeds. Consequently, their use in large medium- and high-speed machines has rapidly increased. An active magnetic bearing rotor system is an inherently unstable, nonlinear multiple-input, multiple-output system. Model-based controller design of AMBs requires an accurate system model. Finite element modeling (FEM) together with the experimental modal analysis provides a very accurate model for the rotor, and a linearized model of the magneticactuators has proven to work well in normal conditions. However, the overall system may suffer from unmodeled dynamics, such as dynamics of foundation or shrink fits. This dynamics can be modeled by system identification. System identification can also be used for on-line diagnostics. In this study, broadband excitation signals are adopted to the identification of an active magnetic bearing rotor system. The broadband excitation enables faster frequency response function measurements when compared with the widely used stepped sine and swept sine excitations. Different broadband excitations are reviewed, and the random phase multisine excitation is chosen for further study. The measurement times using the multisine excitation and the stepped sine excitation are compared. An excitation signal design with an analysis of the harmonics produced by the nonlinear system is presented. The suitability of different frequency response function estimators for an AMB rotor system are also compared. Additionally, analytical modeling of an AMB rotor system, obtaining a parametric model from the nonparametric frequency response functions, and model updating are discussed in brief, as they are key elements in the modeling for a control design. Theoretical methods are tested with a laboratory test rig. The results conclude that an appropriately designed random phase multisine excitation is suitable for the identification of AMB rotor systems.
Resumo:
Resonance energy transfer (RET) is a non-radiative transfer of the excitation energy from the initially excited luminescent donor to an acceptor. The requirements for the resonance energy transfer are: i) the spectral overlap between the donor emission spectrum and the acceptor absorption spectrum, ii) the close proximity of the donor and the acceptor, and iii) the suitable relative orientations of the donor emission and the acceptor absorption transition dipoles. As a result of the RET process the donor luminescence intensity and the donor lifetime are decreased. If the acceptor is luminescent, a sensitized acceptor emission appears. The rate of RET depends strongly on the donor–acceptor distance (r) and is inversely proportional to r6. The distance dependence of RET is utilized in binding assays. The proximity requirement and the selective detection of the RET-modified emission signal allow homogeneous separation free assays. The term lanthanide-based RET is used when luminescent lanthanide compounds are used as donors. The long luminescence lifetimes, the large Stokes’ shifts and the intense, sharply-spiked emission spectra of the lanthanide donors offer advantages over the conventional organic donor molecules. Both the organic lanthanide chelates and the inorganic up-converting phosphor (UCP) particles have been used as donor labels in the RET based binding assays. In the present work lanthanide luminescence and lanthanide-based resonance energy transfer phenomena were studied. Luminescence lifetime measurements had an essential role in the research. Modular frequency-domain and time-domain luminometers were assembled and used successfully in the lifetime measurements. The frequency-domain luminometer operated in the low frequency domain ( 100 kHz) and utilized a novel dual-phase lock-in detection of the luminescence. One of the studied phenomena was the recently discovered non-overlapping fluorescence resonance energy transfer (nFRET). The studied properties were the distance and temperature dependences of nFRET. The distance dependence was found to deviate from the Förster theory and a clear temperature dependence was observed whereas conventional RET was completely independent of the temperature. Based on the experimental results two thermally activated mechanisms were proposed for the nFRET process. The work with the UCP particles involved the measurement of the luminescence properties of the UCP particles synthesized in our laboratory. The goal of the UCP particle research is to develop UCP donor labels for binding assays. In the present work the effect of the dopant concentrations and the core–shell structure on the total up-conversion luminescence intensity, the red–green emission ratio, and the luminescence lifetime was studied. Also the non-radiative nature of the energy transfer from the UCP particle donors to organic acceptors was demonstrated for the first time in aqueous environment and with a controlled donor–acceptor distance.
Resumo:
Alcohol consumption during pregnancy can potentially affect the developing fetus in devastating ways, leading to a range of physical, neurological, and behavioral alterations most accurately termed Fetal Alcohol Spectrum Disorders (FASD). Despite the fact that it is a preventable disorder, prenatal alcohol exposure today constitutes a leading cause of intellectual disability in the Western world. In Western countries where prevalence studies have been performed the rates of FASD exceed, for example, autism spectrum disorders, Down’s syndrome and cerebral palsy. In addition to the direct effects of alcohol, children and adolescents with FASD are often exposed to a double burden in life, as their neurological sequelae are accompanied by adverse living surroundings exposing them to further environmental risk. However, children with FASD today remain remarkably underdiagnosed by the health care system. This thesis forms part of a larger multinational research project, The Collaborative Initiative on Fetal Alcohol Spectrum Disorders (the CIFASD), initiated by the National Institute of Alcohol Abuse and Alcoholism (NIAAA) in the U.S.A. The general aim of the present thesis was to examine a cohort of children and adolescents growing up with fetal alcohol-related damage in Finland. The thesis consists of five studies with a broad focus on diagnosis, cognition, behavior, adaptation and brain metabolic alterations in children and adolescents with FASD. The participants consisted of four different groups: one group with histories of prenatal exposure to alcohol, the FASD group; one IQ matched contrast group mostly consisting of children with specific learning disorder (SLD); and two typically-developing control groups (CON1 and CON2). Participants were identified through medical records, random sampling from the Finnish national population registry and email alerts to students. Importantly, the participants in the present studies comprise a group of very carefully clinically characterized children with FASD as the studies were performed in close collaboration with leading experts in the field (Prof. Edward Riley and Prof. Sarah Mattson, Center for Behavioral Teratology, San Diego State University, U.S.A; Prof. Eugene Hoyme, Sanford School of Medicine, University of South Dakota, U.S.A.). In the present thesis, the revised Institute of Medicine diagnostic criteria for FASD were tested on a Finnish population and found to be a reliable tool for differentiating among the subgroups of FASD. A weighted dysmorphology scoring system proved to be a valuable additional adjunct in quantification of growth deficits and dysmorphic features in children with FASD (Study 1). The purpose of Study 2 was to clarify the relationship between alcohol-related dysmorphic features and general cognitive capacity. Results showed a significant correlation between dysmorphic features and cognitive capacity, suggesting that children with more severe growth deficiency and dysmorphic features have more cognitive limitations. This association was, however, only moderate, indicating that physical markers and cognitive capacity not always go hand in hand in individuals with FASD. Behavioral problems in the FASD group proved substantial compared to the typically developing control group. In Study 3 risk and protective factors associated with behavioral problems in the FASD group were explored further focusing on diagnostic and environmental factors. Two groups with elevated risks for behavioral problems emerged: length of time spent in residential care and a low dysmorphology score proved to be the most pervasive risk factor for behavioral problems. The results underscore the clinical importance of appropriate services and care for less visibly alcohol affected children and highlight the need to attend to children with FASD being raised in institutions. With their background of early biological and psychological impairment compounded with less opportunity for a close and continuous caregiver relationship, such children seem to run an especially great risk of adverse life outcomes. Study 4 focused on adaptive abilities such as communication, daily living skills and social skills, in other words skills that are important for gradually enabling an independent life, maintain social relationships and allow the individual to become integrated into society. The results showed that adaptive abilities of children and adolescents growing up with FASD were significantly compromised compared to both typically-developing peers and IQ-matched children with SLD. Clearly different adaptive profiles were revealed where the FASD group performed worse than the SLD group, who in turn performed worse than the CON1 group. Importantly, the SLD group outperformed the FASD group on adaptive behavior in spite of comparable cognitive levels. This is the first study to compare adaptive abilities in a group of children and adolescents with FASD relative to both a contrast group of IQ-matched children with SLD and to a group of typically-developing peers. Finally, in Study 5, through magnetic resonance spectroscopic imaging (MRS) evidence of longstanding neurochemical alterations were observed in adolescents and young adults with FASD related to alcohol exposure in utero 14-20 years earlier. Neurochemical alterations were seen in several brain areas: in frontal and parietal cortices, corpus callosum, thalamus and frontal white matter areas as well as in the cerebellar dentate nucleus. The findings are compatible with neuropsychological findings in FASD. Glial cells seemed to be more affected than neurons. In conclusion, more societal efforts and resources should be focused on recognizing and diagnosing FASD, and supporting subgroups with elevated risk of poor outcome. Without adequate intervention children and adolescents with FASD run a great risk of marginalization and social maladjustment, costly not only to society but also to the lives of the many young people with FASD.
Resumo:
Switching power supplies are usually implemented with a control circuitry that uses constant clock frequency turning the power semiconductor switches on and off. A drawback of this customary operating principle is that the switching frequency and harmonic frequencies are present in both the conducted and radiated EMI spectrum of the power converter. Various variable-frequency techniques have been introduced during the last decade to overcome the EMC problem. The main objective of this study was to compare the EMI and steady-state performance of a switch mode power supply with different spread-spectrum/variable-frequency methods. Another goal was to find out suitable tools for the variable-frequency EMI analysis. This thesis can be divided into three main parts: Firstly, some aspects of spectral estimation and measurement are presented. Secondly, selected spread spectrum generation techniques are presented with simulations and background information. Finally, simulations and prototype measurements from the EMC and the steady-state performance are carried out in the last part of this work. Combination of the autocorrelation function, the Welch spectrum estimate and the spectrogram were used as a substitute for ordinary Fourier methods in the EMC analysis. It was also shown that the switching function can be used in preliminary EMC analysis of a SMPS and the spectrum and autocorrelation sequence of a switching function correlates with the final EMI spectrum. This work is based on numerous simulations and measurements made with the prototype. All these simulations and measurements are made with the boost DC/DC converter. Four different variable-frequency modulation techniques in six different configurations were analyzed and the EMI performance was compared to the constant frequency operation. Output voltage and input current waveforms were also analyzed in time domain to see the effect of the spread spectrum operation on these quantities. According to the results presented in this work, spread spectrum modulation can be utilized in power converter for EMI mitigation. The results from steady-state voltage measurements show, that the variable-frequency operation of the SMPS has effect on the voltage ripple, but the ripple measured from the prototype is still acceptable in some applications. Both current and voltage ripple can be controlled with proper main circuit and controller design.
Resumo:
The desire to create a statistical or mathematical model, which would allow predicting the future changes in stock prices, was born many years ago. Economists and mathematicians are trying to solve this task by applying statistical analysis and physical laws, but there are still no satisfactory results. The main reason for this is that a stock exchange is a non-stationary, unstable and complex system, which is influenced by many factors. In this thesis the New York Stock Exchange was considered as the system to be explored. A topological analysis, basic statistical tools and singular value decomposition were conducted for understanding the behavior of the market. Two methods for normalization of initial daily closure prices by Dow Jones and S&P500 were introduced and applied for further analysis. As a result, some unexpected features were identified, such as a shape of distribution of correlation matrix, a bulk of which is shifted to the right hand side with respect to zero. Also non-ergodicity of NYSE was confirmed graphically. It was shown, that singular vectors differ from each other by a constant factor. There are for certain results no clear conclusions from this work, but it creates a good basis for the further analysis of market topology.