14 resultados para Equilibrium constants

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liuoksessa metallit muodostavat erilaisia koordinatioyhdisteitä epäorgaanisten ja orgaanisten anionien ja neutraalien molekyylien kanssa. Erityisesti siirtymämetalleilla on voimakas taipumus kompleksiyhdisteiden muodostamiseen elektroneja sisältävien 3-, 4-, ja 5d orbitaaliensa johdosta. Samassa liuoksessa voi samanaikaisesti esiintyä useita erilaisia, mutta samoista lähtöaineista muodostuneita, kompleksiyhdisteitä. Kompleksinmuodostusreaktiot ovat tasapainoreaktioita. Usein tasapainovakiot on esitetty termodynaamisina tasapainovakioina eli ne ovat päteviä standarditilassa. Standarditilan tasapainovakioista voidaan johtaa missä tahansa liuoksessa pätevät vakiot erilaisten Debye-Hückel-teoriasta johdettujen laskentamenetelmien avulla. Metalli-ligandiparin jakautuminen erilaisiksi kompleksiyhdisteiksi voidaan mallintaa kun tunnetaan muodostumisreaktioiden tasapainovakiot. Muodostumisreaktioiden tasapainovakioiden yhtälöistä voidaan johtaa epälineaarinen yhtälöryhmä, joka voidaan ratkaista jollakin numeerisella ratkaisimella. Esimerkiksi Matlab-ohjelmiston sisältämä fsolve-ratkaisin soveltuu tällaiseen tehtävään. Osana tätä työtä on kirjoitettu Matlab-sovellus, jolla voidaan mallintaa kationi-ligandiparin jakautumista koordinaatioyhdisteiksi tunnettujen tasapainovakioiden perusteella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Pellavan ja kuituhampun korren jakeiden tasapainokosteus

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recently developed calculation method to determine stoichiometric dissociation constants of weak acids from potentiometric titration data is described. The titration data from three different weak acids in aqueous salt solutions at 25 °C were used as examples of the use of the method. The salt alone determined the ionic strength of the solutions considered in this study, and salt molalities up to 0,5 mol kg -1 were used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simple single-ion activity coefficient equation originating from the Debye-Hückel theory was used to determine the thermodynamic and stoichiometric dissociation constants of weak acids from data concerning galvanic cells. Electromotive force data from galvanic cells without liquid junctions, which was obtained from literature, was studied in conjuction with the potentiometric titration data relating to aqueous solutions at 298.15 K. The dissociation constants of weak acids could be determined by the presented techniques and almost all the experimental data studied could be interpreted within the range of experimental error. Potentiometric titration has been used here and the calculation methods were developed to obtain the thermodynamic and stoichiometric dissociation constants of some weak acids in aqueous solutions at 298.15 K. The ionic strength of titrated solutions were adjusted using an inert electrolyte, namely, sodium or potassium chloride. Salt content alonedetermines the ionic strength. The ionic strength of the solutions studied varied from 0.059 mol kg-1 to 0.37 mol kg-1, and in some cases up to 1.0 mol kg-1. The following substances were investigated using potentiometric titration: aceticacid, propionic acid, L-aspartic acid, L-glutamic acid and bis(2,2-dimethyl-3-oxopropanol) amine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioetanolin tuotanto kiinnostaa monissa maissa johtuen kansainvälisissä sopimuksissa määritellyistä ilmastotavoitteista. Työssä tutkittiin laboratorio-oloissa ioninvaihtohartsien ominaisuuksien ja erotuksen olosuhteiden vaikutusta rikkihapon ja glukoosin kromatografiseen erotukseen. Tehokkaimmaksi hartsiksi osoittautui polysulfonoitu mesohuokoinen vahva kationinvaihtohartsi Finex CS100C. CS100C:lla voitiin erottaa rikkihappoa ja glukoosia tehokkaimmin korkeissa 25 p-% ja 36 p-% glukoosi- ja rikkihappo-pitoisuuksissa. Lisäksi sillä havaittiin suurin tuotto simuloidussa liikkuvassa pedissä. Yhdessä kolonnissa suoritetuissa erotuskokeissa tutkittiin hartsien erotuskykyä rikkihapolle ja glukoosille sekä virtausnopeuden vaikutusta erotukseen lämpötilassa 22 °C. Saatujen tulosten pohjalta valittiin CS11GC, CS16GC ja CS100C tarkempaan isotermin määritykseen ja simulointiin hyvän erotuskyvyn sekä keskinäisten erojen takia. Adsorptioisotermit määritettiin kolonnikokein sekä 22 °C:n että 50 °C:n lämpötilassa. Isotermeistä havaittiin, että tasapaino kiinto- ja liuosfaasien välille saavutetaan rikkihapolla alhaisella 1 cm3/min virtausnopeudella varmemmin kuin suuremmalla 2,5 cm3/min virtausnopeudella. 50 °C:n lämpötilassa hapon ja glukoosin isotermit olivat jyrkempiä kuin 22 °C:n lämpötilassa. Määritettyihin hapon ja sokerin isotermeihin sovitettiin mallit, joiden parametreja käytettiin yksittäisen kolonnin simulointiin. Simuloinnissa oli estimoitavia parametreja yhdellä kolonnilla aineensiirtokertoimet sekä läpäisykäyristä määritetyt isotermiparametrit glukoosille sekä rikkihapolle ja SMB–erotuksessa vyöhykkeiden 2 ja 3 suhteelliset virtausnopeudet. Siirryttäessä lämpötilojen 22 °C ja 50 °C välillä hartsien parametrit muuttuivat sokerille täysin ja hapolle vain aineensiirtokertoimen osalta. CS100C oli tehokkain SMB–erotuksessa korkeimmalla 0,11 cm3/min tuottavuudella 95 %:n saannon saavuttamiseksi 95 % tuotepuhtaudella raffinaatissa ja ekstraktissa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Percarboxylic acids are commonly used as disinfection and bleaching agents in textile, paper, and fine chemical industries. All of these applications are based on the oxidative potential of these compounds. In spite of high interest in these chemicals, they are unstable and explosive chemicals, which increase the risk of synthesis processes and transportation. Therefore, the safety criteria in the production process should be considered. Microreactors represent a technology that efficiently utilizes safety advantages resulting from small scale. Therefore, microreactor technology was used in the synthesis of peracetic acid and performic acid. These percarboxylic acids were produced at different temperatures, residence times and catalyst i.e. sulfuric acid concentrations. Both synthesis reactions seemed to be rather fast because with performic acid equilibrium was reached in 4 min at 313 K and with peracetic acid in 10 min at 343 K. In addition, the experimental results were used to study the kinetics of the formation of performic acid and peracetic acid. The advantages of the microreactors in this study were the efficient temperature control even in very exothermic reaction and good mixing due to the short diffusion distances. Therefore, reaction rates were determined with high accuracy. Three different models were considered in order to estimate the kinetic parameters such as reaction rate constants and activation energies. From these three models, the laminar flow model with radial velocity distribution gave most precise parameters. However, sulfuric acid creates many drawbacks in this synthesis process. Therefore, a ´´greener´´ way to use heterogeneous catalyst in the synthesis of performic acid in microreactor was studied. The cation exchange resin, Dowex 50 Wx8, presented very high activity and a long life time in this reaction. In the presence of this catalyst, the equilibrium was reached in 120 second at 313 K which indicates a rather fast reaction. In addition, the safety advantages of microreactors were investigated in this study. Four different conventional methods were used. Production of peracetic acid was used as a test case, and the safety of one conventional batch process was compared with an on-site continuous microprocess. It was found that the conventional methods for the analysis of process safety might not be reliable and adequate for radically novel technology, such as microreactors. This is understandable because the conventional methods are partly based on experience, which is very limited in connection with totally novel technology. Therefore, one checklist-based method was developed to study the safety of intensified and novel processes at the early stage of process development. The checklist was formulated using the concept of layers of protection for a chemical process. The traditional and three intensified processes of hydrogen peroxide synthesis were selected as test cases. With these real cases, it was shown that several positive and negative effects on safety can be detected in process intensification. The general claim that safety is always improved by process intensification was questioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational material science with the Density Functional Theory (DFT) has recently gained a method for describing, for the first time the non local bonding i.e., van der Waals (vdW) bonding. The newly proposed van der Waals-Density Functional (vdW-DF) is employed here to address the role of non local interactions in the case of H2 adsorption on Ru(0001) surface. The later vdW-DF2 implementation with the DFT code VASP (Vienna Ab-initio Simulation Package) is used in this study. The motivation for studying H2 adsorption on ruthenium surface arose from the interest to hydrogenation processes. Potential energy surface (PES) plots are created for adsorption sites top, bridge, fcc and hcp, employing the vdW-DF2 functional. The vdW-DF yields 0.1 eV - 0.2 eV higher barriers for the dissociation of the H2 molecule; the vdW-DF seems to bind the H2 molecule more tightly together. Furthermore, at the top site, which is found to be the most reactive, the vdW functional suggests no entrance barrier or in any case smaller than 0.05 eV, whereas the corresponding calculation without the vdW-DF does. Ruthenium and H2 are found to have the opposite behaviors with the vdW-DF; Ru lattice constants are overestimated while H2 bond length is shorter. Also evaluation of the CPU time demand of the vdW-DF2 is done from the PES data. From top to fcc sites the vdW-DF computational time demand is larger by 4.77 % to 20.09 %, while at the hcp site it is slightly smaller. Also the behavior of a few exchange correlation functionals is investigated along addressing the role of vdW-DF. Behavior of the different functionals is not consistent between the Ru lattice constants and H2 bond lengths. It is thus difficult to determine the quality of a particular exchange correlation functional by comparing equilibrium separations of the different elements. By comparing PESs it would be computationally highly consuming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric synthesis using modified heterogeneous catalysts has gained lots of interest in the production of optically pure chemicals, such as pharmaceuticals, nutraceuticals, fragrances and agrochemicals. Heterogeneous modified catalysts capable of inducing high enantioselectivities are preferred in industrial scale due to their superior separation and handling properties. The topic has been intensively investigated both in industry and academia. The enantioselective hydrogenation of ethyl benzoylformate (EBF) to (R)-ethyl mandelate over (-)-cinchonidine (CD)-modified Pt/Al2O3 catalyst in a laboratory-scale semi-batch reactor was studied as a function of modifier concentration, reaction temperature, stirring rate and catalyst particle size. The main product was always (R)-ethyl mandelate while small amounts of (S)-ethyl mandelate were obtained as by product. The kinetic results showed higher enantioselectivity and lower initial rates approaching asymptotically to a constant value as the amount of modifier was increased. Additionally, catalyst deactivation due to presence of impurities in the feed was prominent in some cases; therefore activated carbon was used as a cleaning agent of the raw material to remove impurities prior to catalyst addition. Detailed characterizations methods (SEM, EDX, TPR, BET, chemisorption, particle size distribution) of the catalysts were carried out. Solvent effects were also studied in the semi-batch reactor. Solvents with dielectric constant (e) between 2 and 25 were applied. The enantiomeric excess (ee) increased with an increase of the dielectric coefficient up to a maximum followed by a nonlinear decrease. A kinetic model was proposed for the enantioselectivity dependence on the dielectric constant based on the Kirkwood treatment. The non-linear dependence of ee on (e) successfully described the variation of ee in different solvents. Systematic kinetic experiments were carried out in the semi-batch reactor. Toluene was used as a solvent. Based on these results, a kinetic model based on the assumption of different number of sites was developed. Density functional theory calculations were applied to study the energetics of the EBF adsorption on pure Pt(1 1 1). The hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison between the model and the experimental data revealed a very good correspondence. Transient experiments in a fixed-bed reactor were also carried out in this work. The results demonstrated that continuous enantioselective hydrogenation of EBF in hexane/2-propanol 90/10 (v/v) is possible and that continuous feeding of (-)-cinchonidine is needed to maintain a high steady-state enantioselectivity. The catalyst showed a good stability and high enantioselectivity was achieved in the fixed-bed reactor. Chromatographic separation of (R)- and (S)-ethyl mandelate originating from the continuous reactor was investigated. A commercial column filled with a chiral resin was chosen as a perspective preparative-scale adsorbent. Since the adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for the isomers present in a post-reaction mixture. Breakthrough curves were measured and described successfully by the dispersive plug flow model with a linear driving force approximation. The focus of this research project was the development of a new integrated production concept of optically active chemicals by combining heterogeneous catalysis and chromatographic separation technology. The proposed work is fundamental research in advanced process technology aiming to improve efficiency and enable clean and environmentally benign production of enantiomeric pure chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Torrefaction is moderate thermal treatment (~200-300 °C) of biomass in an inert atmosphere. The torrefied fuel offers advantages to traditional biomass, such as higher heating value, reduced hydrophilic nature, increased its resistance to biological decay, and improved grindability. These factors could, for instance, lead to better handling and storage of biomass and increased use of biomass in pulverized combustors. In this work, we look at several aspects of changes in the biomass during torrefaction. We investigate the fate of carboxylic groups during torrefaction and its dependency to equilibrium moisture content. The changes in the wood components including carbohydrates, lignin, extractable materials and ashforming matters are also studied. And at last, the effect of K on torrefaction is investigated and then modeled. In biomass, carboxylic sites are partially responsible for its hydrophilic characteristic. These sites are degraded to varying extents during torrefaction. In this work, methylene blue sorption and potentiometric titration were applied to measure the concentration of carboxylic groups in torrefied spruce wood. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic group contents. Thus, both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction. This provides new information to the chemical changes occurring during torrefaction. The effect of torrefaction temperature on the chemistry of birch wood was investigated. The samples were from a pilot plant at Energy research Center of the Netherlands (ECN). And in that way they were representative of industrially produced samples. Sugar analysis was applied to analyze the hemicellulose and cellulose content during torrefaction. The results show a significant degradation of hemicellulose already at 240 °C, while cellulose degradation becomes significant above 270 °C torrefaction. Several methods including Klason lignin method, solid state NMR and Py-GC-MS analyses were applied to measure the changes in lignin during torrefaction. The changes in the ratio of phenyl, guaiacyl and syringyl units show that lignin degrades already at 240 °C to a small extent. To investigate the changes in the extractives from acetone extraction during torrefaction, gravimetric method, HP-SEC and GC-FID followed by GC-MS analysis were performed. The content of acetone-extractable material increases already at 240 °C torrefaction through the degradation of carbohydrate and lignin. The molecular weight of the acetone-extractable material decreases with increasing the torrefaction temperature. The formation of some valuable materials like syringaresinol or vanillin is also observed which is important from biorefinery perspective. To investigate the change in the chemical association of ash-forming elements in birch wood during torrefaction, chemical fractionation was performed on the original and torrefied birch samples. These results give a first understanding of the changes in the association of ashforming elements during torrefaction. The most significant changes can be seen in the distribution of calcium, magnesium and manganese, with some change in water solubility seen in potassium. These changes may in part be due to the destruction of carboxylic groups. In addition to some changes in water and acid solubility of phosphorous, a clear decrease in the concentration of both chlorine and sulfur was observed. This would be a significant additional benefit for the combustion of torrefied biomass. Another objective of this work is studying the impact of organically bound K, Na, Ca and Mn on mass loss of biomass during torrefaction. These elements were of interest because they have been shown to be catalytically active in solid fuels during pyrolysis and/or gasification. The biomasses were first acid washed to remove the ash-forming matters and then organic sites were doped with K, Na, Ca or Mn. The results show that K and Na bound to organic sites can significantly increase the mass loss during torrefaction. It is also seen that Mn bound to organic sites increases the mass loss and Ca addition does not influence the mass loss rate on torrefaction. This increase in mass loss during torrefaction with alkali addition is unlike what has been found in the case of pyrolysis where alkali addition resulted in a reduced mass loss. These results are important for the future operation of torrefaction plants, which will likely be designed to handle various biomasses with significantly different contents of K. The results imply that shorter retention times are possible for high K-containing biomasses. The mass loss of spruce wood with different content of K was modeled using a two-step reaction model based on four kinetic rate constants. The results show that it is possible to model the mass loss of spruce wood doped with different levels of K using the same activation energies but different pre-exponential factors for the rate constants. Three of the pre-exponential factors increased linearly with increasing K content, while one of the preexponential factors decreased with increasing K content. Therefore, a new torrefaction model was formulated using the hemicellulose and cellulose content and K content. The new torrefaction model was validated against the mass loss during the torrefaction of aspen, miscanthus, straw and bark. There is good agreement between the model and the experimental data for the other biomasses, except bark. For bark, the mass loss of acetone extractable material is also needed to be taken into account. The new model can describe the kinetics of mass loss during torrefaction of different types of biomass. This is important for considering fuel flexibility in torrefaction plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.