5 resultados para Electrophoresis of LPS
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This MSc work was done in the project of BIOMECON financed by Tekes. The prime target of the research was, to develop methods for separation and determination of carbohydrates (sugars), sugar acids and alcohols, and some other organic acids in hydrolyzed pulp samples by capillary electrophoresis (CE) using UV detection. Aspen, spruce, and birch pulps are commonly used for production of papers in Finland. Feedstock components in pulp predominantly consist of carbohydrates, organic acids, lignin, extractives, and proteins. Here in this study, pulps have been hydrolyzed in analytical chemistry laboratories of UPM Company and Lappeenranta University in order to convert them into sugars, acids, alcohols, and organic acids. Foremost objective of this study was to quantify and identify the main and by-products in the pulp samples. For the method development and optimization, increased precision in capillary electrophoresis was accomplished by calculating calibration data of 16 analytes such as D-(-)-fructose, D(+)-xylose, D(+)-mannose, D(+)-cellobiose, D-(+)-glucose, D-(+)-raffinose, D(-)-mannitol, sorbitol, rhamnose, sucrose, xylitol, galactose, maltose, arabinose, ribose, and, α-lactose monohydratesugars and 16 organic acids such as D-glucuronic, oxalic, acetic, propionic, formic, glycolic, malonic, maleic, citric, L-glutamic, tartaric, succinic, adipic, ascorbic, galacturonic, and glyoxylic acid. In carbohydrate and polyalcohol analyses, the experiments with CE coupled to direct UV detection and positive separation polarity was performed in 36 mM disodium hydrogen phosphate electrolyte solution. For acid analyses, CE coupled indirect UV detection, using negative polarity, and electrolyte solution made of 2,3 pyridinedicarboxylic acid, Ca2+ salt, Mg2+ salts, and myristyltrimethylammonium hydroxide in water was used. Under optimized conditions, limits of detection, relative standard deviations and correlation coefficients of each compound were measured. The optimized conditions were used for the identification and quantification of carbohydrates and acids produced by hydrolyses of pulp. The concentrations of the analytes varied between 1 mg – 0.138 g in liter hydrolysate.
Resumo:
Vaahdotusta käytetään yleisesti erottamaan eri mineraaleja malmista. Tässä menetelmässä käytetään erityisiä pinta-aktiivisia aineita, joita kutsutaan kokoojakemikaaleiksi, muuntamaan halutut mineraalit hydrofobisiksi ja erottamaan ne hydrofiilisistä partikkeleista ilmakuplien avulla. Eräs tärkeimmistä kokoojakemikaalien ryhmistä on ksantaatit. Ksantaateilla on havaittu taipumusta hajota useiksi erilaisiksi hajoamistuotteiksi vaahdotusprosessin aikana. Näillä hajoamistuotteilla voi olla monia haitallisia vaikutuksia vaahdotuksen tuloksiin. Näiden tuotteiden tunnistaminen ja määrittäminen on tärkeää vaahdotusprosessin paremman ymmärtämisen kannalta. Työn kirjallisuusosassa vaahdotusprosessi, ksantaatit ja niiden yleisimmät hajoamistuotteet on esitelty, kuten myös käytetty analyysimenetelmä, kapillaarielektroforeesi. Työn kokeellisessa osassa etsittiin sopivaa erotusmenetelmää etyyliksantaatin, etyylitiokarbonaatin, etyyliperksantaatin ja etyyliksantyylitiosulfaatin erottamiseksi kapillaarilelektroforeesilla. Pääasiassa keskityttiin kahteen eri erotusmenetelmään. Ensimmäinen menetelmä kykeni erottamaan kaikki tutkitut tuotteet puhdasvesinäytteissä, ja toinen menetelmä oli sopiva näiden tuotteiden erottamiseen prosessivesinäytteissä. Jälkimmäistä menetelmää kokeiltiin käytännössä rikastamolla, jossa sillä kyettiin erottamaan isobutyyliksantaatti, isobutyylitiokarbonaatti, ja suurella todennäköisyydellä myös isobutyyliperksantaatti.
Resumo:
Vaahdotusprosessia käytetään yleisesti erottamaan arvokkaita mineraaleja malmeista. Toimiakseen tehokkaasti prosessi tarvitsee kokoojakemikaaleja, joiden tehtävänä on sitoa halutut mineraalit ilmakupliin. Jotta näiden kemikaalien käyttäytymistä prosessissa voitaisiin ymmärtää paremmin ja prosessin ohjausta tehostaa, pitää kokoojia pystyä analysoimaan prosessivesistä. Työn kirjallisuusosassa on koottu ja vertailtu erilaisia kirjallisuudesta löytyneitä analyysimenetelmiä kokoojakemikaaleille. Kokeellisessaosassa on kehitetty kaksi kapillaarielektroforeesimenetelmää näiden kemikaalien tutkimiseen. Menetelmien toteamisrajat tutkituille kemikaaleille olivat seuraavanlaiset: natrium diiosobutylditiofosfaattille (DTP) 2,7 mg/L puhtaassa vedessä ja 6,7 mg/L prosessivedessä; natrium diisobutyldithiofosfinaatille (DTPI) vastaavasti 4,5 mg/L ja 6,7 mg/L; etyyli ksantaatille 0,025 mg/L ja 0,16 mg/L; ja isobutyyli ksantaatille 0,41 mg/L ja 0,62 mg/L. Näitä menetelmiä voidaan tulevaisuudessa kehittää kokoojien hajoamistuotteiden analysointia varten sekä prosessien on-line mittauksiin.
Resumo:
Bioprocess technology is a multidisciplinary industry that combines knowledge of biology and chemistry with process engineering. It is a growing industry because its applications have an important role in the food, pharmaceutical, diagnostics and chemical industries. In addition, the current pressure to decrease our dependence on fossil fuels motivates new, innovative research in the replacement of petrochemical products. Bioprocesses are processes that utilize cells and/or their components in the production of desired products. Bioprocesses are already used to produce fuels and chemicals, especially ethanol and building-block chemicals such as carboxylic acids. In order to enable more efficient, sustainable and economically feasible bioprocesses, the raw materials must be cheap and the bioprocesses must be operated at optimal conditions. It is essential to measure different parameters that provide information about the process conditions and the main critical process parameters including cell density, substrate concentrations and products. In addition to offline analysis methods, online monitoring tools are becoming increasingly important in the optimization of bioprocesses. Capillary electrophoresis (CE) is a versatile analysis technique with no limitations concerning polar solvents, analytes or samples. Its resolution and efficiency are high in optimized methods creating a great potential for rapid detection and quantification. This work demonstrates the potential and possibilities of CE as a versatile bioprocess monitoring tool. As a part of this study a commercial CE device was modified for use as an online analysis tool for automated monitoring. The work describes three offline CE analysis methods for the determination of carboxylic, phenolic and amino acids that are present in bioprocesses, and an online CE analysis method for the monitoring of carboxylic acid production during bioprocesses. The detection methods were indirect and direct UV, and laser-induced frescence. The results of this work can be used for the optimization of bioprocess conditions, for the development of more robust and tolerant microorganisms, and to study the dynamics of bioprocesses.
Resumo:
Capillary electrophoresis method designed originally for the analysis of monosaccharides was validated using reference solutions of polydatin. The validation was conducted by studying and determining the concentration levels of LOD and LOQ and the range of linearity and by determining levels of uncertainty in respect to repeatability and reproducibility. The reliability of the gained results is also discussed. A guide with recommendations considering the validation and overall design of analysis sequences with CE is also produced as a result of this study.