49 resultados para Electric energy systems
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Reaaliaikaisten käyttöjärjestelmien käyttö sulautetuissa järjestelmissä on kasvamassa koko ajan. Sulautettuja tietokoneita käytetään yhä useammassa kohteessa kuten sähkökäyttöjen ohjauksessa. Sähkökäyttöjen ohjaus hoidetaan nykyisin yleensä nopealla digitaalisella signaaliprosessorilla (DSP), jolloin ohjelmointi ja päivittäminen on hidasta ja vaikeaa johtuen käytettävästä matalan tason Assembler-kielestä. Ratkaisuna yleiskäyttöisten prosessorien ja reaaliaikakäyttöjärjestelmien käyttö. Kaupalliset reaaliaikakäyttöjärjestelmät ovat kalliita ja lähdekoodin saaminen omaan käyttöön jopa mahdotonta. Linux on ei-kaupallinen avoimen lähdekoodin käyttöjärjestelmä, joten sen käyttö on ilmaista ja sitä voi muokata vapaasti. Linux:iin on saatavana useita laajennuksia, jotka tekevät siitä reaaliaikaisen käyttöjärjestelmän. Vaihtoehtoina joko kova (hard) tai pehmeä (soft) reaaliaikaisuus. Linux:iin on olemassa valmiita kehitysympäristöjä mutta ne kaipaavat parannusta ennen kuin niitä voidaan käyttää suuressa mittakaavassa teollisuudessa. Reaaliaika Linux ei sovellus nopeisiin ohjauslooppeihin (<100 ms) koska nopeus ei riitä vielä mutta nopeus kasvaa samalla kun prosessorit kehittyvät. Linux soveltuu hyvin rajapinnaksi nopean ohjauksen ja käyttäjän välille ja hitaampaan ohjaukseen.
Resumo:
This thesis studies the possibilities to recover energy in a hydraulic forklift system. Controlling of the system is done directly with an electric servo motor drive and a hydraulic pump. A real system was built and tested and simulations of the system were made with Matlab. Results of the system and simulations were analysed and compared and according to them, energy can be recovered efficiently from the hydraulic forklift system. Also new ideas and directions of further research were obtained with the help of this research.
Resumo:
This study compares different electric propulsion systems. Results of the analysis of all the advantages and disadvantages of the different propulsion systems are given. This thesis estimates possibilities to apply different diesel-electric propulsion concepts for different vessel types. Small and medium size vessel’s power ranges are studied. The optimal delivery system is chosen. This choice is made on the base of detailed study of the concepts, electrical equipment market and comparison of mass, volume and efficiency parameters. In this thesis three marine generators are designed. They are: salient pole synchronous generator and two permanent magnet synchronous generators. Their electrical, dimensional, cost and efficiency parameters are compared. To understand all the benefits diagrams with these parameters are prepared. Possible benefits and money savings are estimated. As the result the advantages, disadvantages and boundary conditions for the permanent magnet synchronous generator application in marine electric-power systems are found out.
Resumo:
Over the recent years, development in mobile working machines has concentrated on reducing emissions owing to the tightening rules and needs to improve energy utilization and reduce power losses. This study focuses on energy utilization and regeneration in an electro-hydraulic forklift, which is a lifting equipment application. The study starts from the modelling and simulation of a hydraulic forklift. The energy regeneration from the potential energy of the load was studied. Also a flow-based electric motor speed control was suggested in this thesis instead of the throttle control method or the variable displacement pump control. Topics related to further development in the future are discussed. Finally, a summary and conclusions are presented.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
The main objective of this thesis is to evaluate the economic and environmental effectiveness of three different renewable energy systems: solar PV, wind energy and biomass energy systems. Financial methods such as Internal Rate of Return (IRR) and Modified Internal Rate of Return (MIRR) were used to evaluate economic competitiveness. Seasonal variability in power generation capability of different renewable systems were also taken into consideration. In order to evaluate the environmental effectiveness of different energy systems, default values in GaBi software were taken by defining the functional unit as 1kWh. The results show that solar PV systems are difficult to justify both in economic as well as environmental grounds. Wind energy performs better in both economic and environmental grounds and has the capability to compete with conventional energy systems. Biomass energy systems exhibit environmental and economic performance at the middle level. In each of these systems, results vary.
Resumo:
The purpose of this study is to improve the potential energy recovery to electric energy in an electrohydraulic forklift system. The initial achieved result for energy saving ratio after structural optimization is 40 %. Component optimization is applied to the tested drive which consists of a DTC controlled electric servo motor directly running a reversible hydraulic pump. According to the study the energy efficiency and the energy recovery from the electro-hydraulic forklift system can be increased by 11 % units. New ideas and directions of further research were obtained during the study.
Resumo:
In distributed energy production, permanent magnet synchronous generators (PMSG) are often connected to the grid via frequency converters, such as voltage source line converters. The price of the converter may constitute a large part of the costs of a generating set. Some of the permanent magnet synchronous generators with converters and traditional separately excited synchronous generators couldbe replaced by direct-on-line (DOL) non-controlled PMSGs. Small directly networkconnected generators are likely to have large markets in the area of distributed electric energy generation. Typical prime movers could be windmills, watermills and internal combustion engines. DOL PMSGs could also be applied in island networks, such as ships and oil platforms. Also various back-up power generating systems could be carried out with DOL PMSGs. The benefits would be a lower priceof the generating set and the robustness and easy use of the system. The performance of DOL PMSGs is analyzed. The electricity distribution companies have regulations that constrain the design of the generators being connected to the grid. The general guidelines and recommendations are applied in the analysis. By analyzing the results produced by the simulation model for the permanent magnet machine, the guidelines for efficient damper winding parameters for DOL PMSGs are presented. The simulation model is used to simulate grid connections and load transients. The damper winding parameters are calculated by the finite element method (FEM) and determined from experimental measurements. Three-dimensional finite element analysis (3D FEA) is carried out. The results from the simulation model and 3D FEA are compared with practical measurements from two prototype axial flux permanent magnet generators provided with damper windings. The dimensioning of the damper winding parameters is case specific. The damper winding should be dimensioned based on the moment of inertia of the generating set. It is shown that the damper winding has optimal values to reach synchronous operation in the shortest period of time after transient operation. With optimal dimensioning, interferenceon the grid is minimized.
Resumo:
The goal of the master's thesis is a detailed research of the technical wind energy potential in Russian Federation: the distribution of the potential all over the territory of the country and the possibility of the application of the potential for power supply of various objects. The main attention of the thesis is devoted to the assessment of wind energy resources (potential) of Russian Federation, both for the territory of country in whole and for every region. Theoretical basic wind energy concepts and the scheme of transformation of kinetic energy of a wind into electric energy by modern wind turbines are given in the work. Also the costs of energy, stimuli of development of wind-engineering and obstacles which impact the industry development are analyzed. The review of existent and projected wind power plants in Russia is carried out.
Resumo:
Tässä työssä tarkastellaan pientalojen kiristyvien energiatehokkuusvaatimusten vaikutusta lämmitysratkaisuista aiheutuviin hiilidioksipäästöihin. Kiristyvät vaatimukset tähtäävät tarvittavan lämmitysenergian ja hiilidioksidipäästöjen pienenemiseen mutta ne vaikuttavat myös lämmitystapojen keskinäiseen kilpailukykyyn. Koska hiilidioksidipäästöt lämmitystapojen kesken ovat erilaisia, ei päästöt pienene samassa suhteessa lämmitysenergian pienentymisen kanssa mikäli järjestelmä vaihdetaan suurempipäästöiseen lämmitystapaan. Kannattavuuden perusteella arvioidaan mitkä lämmitystavat yleistyvät tulevaisuudessa ja kuinka muutos vaikuttaa hiilidioksipäästöihin. Tarkasteltavina lämmitysmuotoina on maalämpöpumppulämmitys, öljylämmitys ja kaukolämpölämmitys. Tarkasteltavia lämmitysmuotoja verrataan investointikustannuksiltaan edullisimpiin sähkölämmitysmuotoihin. Työssä todettiin energiatehokkuuden vaatimusten kiristämisen kasvattavan sähkölämmitystapojen osuutta. Koska lämmityssähkön hiilidioksidipäästöt ovat korkeat, joissain tapauksissa hiilidioksipäästöt jopa kasvavat energiatehokkuuden parantuessa.
Resumo:
The purpose of this master’s thesis was to develop a method to be used in the selection of an optimal energy system for buildings and districts. The term optimal energy system was defined as the energy system which best fulfils the requirements of the stakeholder on whose preferences the energy systems are evaluated. The most influential stakeholder in the process of selecting an energy system was considered to be the district developer. The selection method consisted of several steps: Definition of the district, calculating the energy consumption of the district and buildings within the district, defining suitable energy system alternatives for the district, definition of the comparing criteria, calculating the parameters of the comparing criteria for each energy system alternative and finally using a multi-criteria decision method to rank the alternatives. For the purposes of the selection method, the factors affecting the energy consumption of buildings and districts and technologies enabling the use of renewable energy were reviewed. The key element of the selection method was a multi-criteria decision making method, PROMETHEE II. In order to compare the energy system alternatives with the developed method, the comparing criteria were defined in the study. The criteria included costs, environmental impacts and technological and technical characteristics of the energy systems. Each criterion was given an importance, based on a questionnaire which was sent for the steering groups of two district development projects. The selection method was applied in two case study analyses. The results indicate that the selection method provides a viable and easy way to provide the decision makers alternatives and recommendations regarding the selection of an energy system. Since the comparison is carried out by changing the alternatives into numeric form, the presented selection method was found to exclude any unjustified preferences over certain energy systems alternatives which would affect the selection.
Resumo:
Viilunkuivaus vaneriteollisuudessa on energiaintensiivinen prosessi, josta syntyvä hukkalämpö kannattaa ottaa talteen ja hyödyntää. Työ käsittelee erilaisten lämmöntalteenottovariaatioiden tuotteistusta ja kannattavuutta, sekä sisältää laitteiston riskianalyysin. Aiemman asiakaskohtaisen räätälöinnin sijaan, laitteiston modulaarinen tuoterakenne on otettava tuotteistuksen lähtökohdaksi. Modulaarisen tuoterakenteen ansiosta erilaisiin asiakastarpeisiin pystytään vastaamaan aiempaa tehokkaammin, kiitos erilaisten variaatioiden. Standardien ja yhtenäisten rajapintojen myötä muun muassa suunnittelua, projektinhoito ja myyntiä saadaan tehostettua. Lämmöntalteenottoratkaisuille luodaan kolme eri varustelutasoa: perus, korkea ja luksus. Näillä eri varianteilla pystytään vastamaan entistä kattavammin eri markkina-alueiden asiakastarpeisiin. Kannattavuuslaskelmat todistavat, että lämmöntalteenoton avulla saadaan merkittäviä energiasäästöjä ja eri laitteistovariaatiot maksavat itsensä erittäin nopeasti takaisin, vaikka esimerkiksi sähköenergian hinta nousisi radikaalisti. Lämmöntalteenoton voidaankin katsoa olevan aina erittäin kannattavaa. Laitteistosta on tunnistettu myös tekniset riskit, joihin on puututtava välittömästi sekä lukuisia toimenpide-ehdotuksia, joiden avulla laitteiston tuomintaa voidaan tehostaa ja muuttaa turvallisemmaksi. Riskianalyysi antaa myös suuntaviivoja tuotteistukselle sekä laitteiston huolto- ja käyttöohjeistolle.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
Currently widely accepted consensus is that greenhouse gas emissions produced by the mankind have to be reduced in order to avoid further global warming. The European Union has set a variety of CO2 reduction and renewable generation targets for its member states. The current energy system in the Nordic countries is one of the most carbon free in the world, but the aim is to achieve a fully carbon neutral energy system. The objective of this thesis is to consider the role of nuclear power in the future energy system. Nuclear power is a low carbon energy technology because it produces virtually no air pollutants during operation. In this respect, nuclear power is suitable for a carbon free energy system. In this master's thesis, the basic characteristics of nuclear power are presented and compared to fossil fuelled and renewable generation. Nordic energy systems and different scenarios in 2050 are modelled. Using models and information about the basic characteristics of nuclear power, an opinion is formed about its role in the future energy system in Nordic countries. The model shows that it is possible to form a carbon free Nordic energy system. Nordic countries benefit from large hydropower capacity which helps to offset fluctuating nature of wind power. Biomass fuelled generation and nuclear power provide stable and predictable electricity throughout the year. Nuclear power offers better energy security and security of supply than fossil fuelled generation and it is competitive with other low carbon technologies.
Resumo:
The main objective of the study was to define the methodology for assessing the limits for application island grids instead of interconnecting with existing grid infrastructure. The model for simulation of grid extension distance and levelised cost of electricity has been developed and validated by the case study in Finland. Thereafter, sensitivities of the application limits were examined with the respect to operational environment, load conditions, supply security and geographical location. Finally, recommendations for the small-scale rural electrification projects in the market economy environment have been proposed.