3 resultados para ERM-binding domain

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The large biodiversity of cyanobacteria together with the increasing genomics and proteomics metadata provide novel information for finding new commercially valuable metabolites. With the advent of global warming, there is growing interest in the processes that results in efficient CO2 capture through the use of photosynthetic microorganisms such as cyanobacteria. This requires a detailed knowledge of how cyanobacteria respond to the ambient CO2. My study was aimed at understanding the changes in the protein profile of the model organism, Synechocystis PCC 6803 towards the varying CO2 level. In order to achieve this goal I have employed modern proteomics tools such as iTRAQ and DIGE, recombinant DNA techniques to construct different mutants in cyanobacteria and biophysical methods to study the photosynthetic properties. The proteomics study revealed several novel proteins, apart from the well characterized proteins involved in carbon concentrating mechanisms (CCMs), that were upregulated upon shift of the cells from high CO2 concentration (3%) to that in air level (0.039%). The unknown proteins, Slr0006 and flavodiiron proteins (FDPs) Sll0217-Flv4 and Sll0219-Flv2, were selected for further characterization. Although slr0006 was substantially upregulated under Ci limiting conditions, inactivation of the gene did not result in any visual phenotype under various environmental conditions indicating that this protein is not essential for cell survival. However, quantitative proteomics showed the induction of novel plasmid and chromosome encoded proteins in deltaslr0006 under air level CO2 conditions. The expression of the slr0006 gene was found to be strictly dependent on active photosynthetic electron transfer. Slr0006 contains conserved dsRNA binding domain that belongs to the Sua5/YrdC/YciO protein family. Structural modelling of Slr0006 showed an alpha/beta twisted open-sheet structure and a positively charged cavity, indicating a possible binding site for RNA. The 3D model and the co-localization of Slr0006 with ribosomal subunits suggest that it might play a role in translation or ribosome biogenesis. On the other hand, deletions in the sll0217-sll218- sll0219 operon resulted in enhanced photodamage of PSII and distorted energy transfer from phycobilisome (PBS) to PSII, suggesting a dynamic photoprotection role of the operon. Constructed homology models also suggest efficient electron transfer in heterodimeric Flv2/Flv4, apparently involved in PSII photoprotection. Both Slr0006 and FDPs exhibited several common features, including negative regulation by NdhR and ambiguous cellular localization when subjected to different concentrations of divalent ions. This strong association with the membranes remained undisturbed even in the presence of detergent or high salt. My finding brings ample information on three novel proteins and their functions towards carbon limitation. Nevertheless, many pathways and related proteins remain unexplored. The comprehensive understanding of the acclimation processes in cyanobacteria towards varying environmental CO2 levels will help to uncover adaptive mechanisms in other organisms, including higher plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpha2-Adrenoceptors: structure and ligand binding properties at the molecular level The mouse is the most frequently used animal model in biomedical research, but the use of zebrafish as a model organism to mimic human diseases is on the increase. Therefore it is considered important to understand their pharmacological differences from humans also at the molecular level. The zebrafish Alpha2-adrenoceptors were expressed in mammalian cells and the binding affinities of 20 diverse ligands were determined and compared to the corresponding human receptors. The pharmacological properties of the human and zebrafish Alpha2--adrenoceptors were found to be quite well conserved. Receptor models based on the crystal structures of bovine rhodopsin and the human Beta2-adrenoceptor revealed that most structural differences between the paralogous and orthologous Alpha2--adrenoceptors were located within the second extracellular loop (XL2). Reciprocal mutations were generated in the mouse and human Alpha2--adrenoceptors. Ligand binding experiments revealed that substitutions in XL2 reversed the binding profiles of the human and mouse Alpha2--adrenoceptors for yohimbine, rauwolscine and RS-79948-197, evidence for a role for XL2 in the determination of species-specific ligand binding. Previous mutagenesis studies had not been able to explain the subtype preference of several large Alpha2--adrenoceptor antagonists. We prepared chimaeric Alpha2--adrenoceptors where the first transmembrane (TM1) domain was exchanged between the three human Alpha2--adrenoceptor subtypes. The binding affinities of spiperone, spiroxatrine and chlorpromazine were observed to be significantly improved by TM1 substitutions of the Alpha2a--adrenoceptor. Docking simulations indicated that indirect effects, such as allosteric modulation, are more likely to be involved in this phenomenon rather than specific side-chain interactions between ligands and receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resonance energy transfer (RET) is a non-radiative transfer of the excitation energy from the initially excited luminescent donor to an acceptor. The requirements for the resonance energy transfer are: i) the spectral overlap between the donor emission spectrum and the acceptor absorption spectrum, ii) the close proximity of the donor and the acceptor, and iii) the suitable relative orientations of the donor emission and the acceptor absorption transition dipoles. As a result of the RET process the donor luminescence intensity and the donor lifetime are decreased. If the acceptor is luminescent, a sensitized acceptor emission appears. The rate of RET depends strongly on the donor–acceptor distance (r) and is inversely proportional to r6. The distance dependence of RET is utilized in binding assays. The proximity requirement and the selective detection of the RET-modified emission signal allow homogeneous separation free assays. The term lanthanide-based RET is used when luminescent lanthanide compounds are used as donors. The long luminescence lifetimes, the large Stokes’ shifts and the intense, sharply-spiked emission spectra of the lanthanide donors offer advantages over the conventional organic donor molecules. Both the organic lanthanide chelates and the inorganic up-converting phosphor (UCP) particles have been used as donor labels in the RET based binding assays. In the present work lanthanide luminescence and lanthanide-based resonance energy transfer phenomena were studied. Luminescence lifetime measurements had an essential role in the research. Modular frequency-domain and time-domain luminometers were assembled and used successfully in the lifetime measurements. The frequency-domain luminometer operated in the low frequency domain ( 100 kHz) and utilized a novel dual-phase lock-in detection of the luminescence. One of the studied phenomena was the recently discovered non-overlapping fluorescence resonance energy transfer (nFRET). The studied properties were the distance and temperature dependences of nFRET. The distance dependence was found to deviate from the Förster theory and a clear temperature dependence was observed whereas conventional RET was completely independent of the temperature. Based on the experimental results two thermally activated mechanisms were proposed for the nFRET process. The work with the UCP particles involved the measurement of the luminescence properties of the UCP particles synthesized in our laboratory. The goal of the UCP particle research is to develop UCP donor labels for binding assays. In the present work the effect of the dopant concentrations and the core–shell structure on the total up-conversion luminescence intensity, the red–green emission ratio, and the luminescence lifetime was studied. Also the non-radiative nature of the energy transfer from the UCP particle donors to organic acceptors was demonstrated for the first time in aqueous environment and with a controlled donor–acceptor distance.