3 resultados para ENDO-OLIGOPEPTIDASE-A
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Integrins are heterodimeric adhesion receptors mediating adhesion to extracellular matrix proteins and to other cells. Integrins are important in embryonic development, structural integrity of connective tissue, blood thrombus formation, and immune defense system. Integrins are transmembrane proteins whose ligand binding capacity (activity) is regulated by large conformational changes. Extracellular ligand binding or intracellular effector binding to integrin cytoplasmic face regulate integrin activity. Integrins are thus able to mediate bi-directional signaling. Integrin function is also regulated by intracellular location. Integrins are constantly recycled from endocytic vesicles to plasma membrane, and this has been shown to be important for cell migration and invasion as well. Deregulation of integrin functionality can lead to deleterious illnesses, such as bleeding or inflammatory disorders. It is also evident that integrin deregulation is associated with cancer progression. In this study, a novel Beta1 integrin associating protein, Rab21, was characterized. Rab21 binding to integrin cytoplasmic tail was shown to be important for Beta1 integrin endo- and exocytosis – intracellular trafficking. It was furher shown that this interaction has an important role in cell adhesion, migration, as well as in the final step of cell division, cytokinesis. This work showed that abrogation of Rab21 function or β1 integrin endocytic traffic, can lead to defects in cell division and results in formation of multinucleated cells. Multinucleation and especially tetraploidy can be a transient pathway to aneuploidy and tumorigenesis. This work characterized chromosomal deletions in rab21 locus in ovarian and prostate cancer samples and showed that a cell line with rab21 deletion also had impairment in cell division, which could be rescued by Rab21 re-expression. The work demonstrates an important role for Rab21 and Beta1 integrin traffic regulation in cell adhesion and division, and suggests a probable associaton with tumorigenesis. In this study, Beta1 integrin activity regulation was also addressed. A novel cell array platform for genome-scale RNAi screenings was characterized here. More than 4500 genes were knocked-down in prostate cancer cells using siRNA-mediated silencing. The effects on Beta1 integrin activity were analyzed upon knock-downs. The screen identified more that 400 putative regulators of Beta1 integrin activity in prostate cancer. In conclusion, this work will help us to understand complex regulatory pathways involved in cancer cell adhesion and migration.
Resumo:
In this doctoral thesis, a tomographic STED microscopy technique for 3D super-resolution imaging was developed and utilized to observebone remodeling processes. To improve upon existing methods, wehave used a tomographic approach using a commercially available stimulated emission depletion (STED) microscope. A certain region of interest (ROI) was observed at two oblique angles: one at a standard inverted configuration from below (bottom view) and another from the side (side view) via a micro-mirror positioned close to the ROI. The two viewing angles were reconstructed into a final tomogram. The technique, named as tomographic STED microscopy, was able to achieve an axial resolution of approximately 70 nm on microtubule structures in a fixed biological specimen. High resolution imaging of osteoclasts (OCs) that are actively resorbing bone was achieved by creating an optically transparent coating on a microscope coverglass that imitates a fractured bone surface. 2D super-resolution STED microscopy on the bone layer showed approximately 60 nm of lateral resolution on a resorption associated organelle allowing these structures to be imaged with super-resolution microscopy for the first time. The developed tomographic STED microscopy technique was further applied to study resorption mechanisms of OCs cultured on the bone coating. The technique revealed actin cytoskeleton with specific structures, comet-tails, some of which were facing upwards and some others were facing downwards. This, in our opinion, indicated that during bone resorption, an involvement of the actin cytoskeleton in vesicular exocytosis and endocytosis is present. The application of tomographic STED microscopy in bone biology demonstrated that 3D super-resolution techniques can provide new insights into biological 3D nano-structures that are beyond the diffraction-limit when the optical constraints of super-resolution imaging are carefully taken into account.
Resumo:
Integrins are the main cell surface receptors by which cells adhere to the surrounding extracellular matrix (ECM). Cells regulate integrin-mediated adhesions by integrin endo/exocytic trafficking or by altering the integrin activation status. Integrin binding to ECM-components induces several intracellular signalling cascades, which regulate almost every aspect of cell behaviour from cell motility to survival, and dysregulation of integrin traffic or signalling is associated with cancer progression. Upon detachment, normal cells undergo a specialised form of programmed cell death namely anoikis and the ECM-integrin -mediated activation of focal adhesion kinase (FAK) signalling at the cell surface has been considered critical for anoikis suppression. Integrins are also constantly endocytosed and recycled back to the plasma membrane, and so far the role of integrin traffic in cancer has been linked to increased adhesion site turnover and cell migration. However, different growth factor receptors are known to signal also from endosomes, but the ability of integrins to signal from endosomes has not been previously studied. In this thesis, I demonstrate for the first time that integrins are signalling also from endosomes. In contrast to previous believes, integrin-induced focal adhesion kinase (FAK) signalling occurs also on endosomes, and the endosomal FAK signalling is critical for anoikis suppression and for cancer related processes such as anchorage-independent growth and metastasis. Moreover, we have set up a new integrin trafficking assay and demonstrate for the first time in a comprehensive manner that active and inactive integrins undergo distinct trafficking routes. Together these results open up new horizons in our understanding of integrins and highlight the fundamental connection between integrin traffic and signalling.