5 resultados para Drug-design

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual screening is a central technique in drug discovery today. Millions of molecules can be tested in silico with the aim to only select the most promising and test them experimentally. The topic of this thesis is ligand-based virtual screening tools which take existing active molecules as starting point for finding new drug candidates. One goal of this thesis was to build a model that gives the probability that two molecules are biologically similar as function of one or more chemical similarity scores. Another important goal was to evaluate how well different ligand-based virtual screening tools are able to distinguish active molecules from inactives. One more criterion set for the virtual screening tools was their applicability in scaffold-hopping, i.e. finding new active chemotypes. In the first part of the work, a link was defined between the abstract chemical similarity score given by a screening tool and the probability that the two molecules are biologically similar. These results help to decide objectively which virtual screening hits to test experimentally. The work also resulted in a new type of data fusion method when using two or more tools. In the second part, five ligand-based virtual screening tools were evaluated and their performance was found to be generally poor. Three reasons for this were proposed: false negatives in the benchmark sets, active molecules that do not share the binding mode, and activity cliffs. In the third part of the study, a novel visualization and quantification method is presented for evaluation of the scaffold-hopping ability of virtual screening tools.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidative stress is a constant threat to almost all organisms. It damages a number of biomolecules and leads to the disruption of many crucial cellular functions. It is caused by reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), superoxide (•O2 -), and hydroxyl radical (•OH). The most harmful of these compounds is •OH, which is only formed in cells in the presence of redox-cycling transition metals, such as iron and copper. Bacteria have developed a number of mechanisms to cope with ROS. One of the most widespread means employed by bacteria is the DNA-binding proteins from starved cells (Dps). Dps proteins protect the cells by binding and oxidizing Fe2+, thus greatly reducing the production of •OH. The oxidized iron is stored inside the protein as an iron core. In addition, Dps proteins bind directly to DNA forming a protective coating that shields DNA from harmful agents. Moreover, Dps proteins have been found to elicit other protective functions in cells and to participate in bacterial virulence. Dps proteins are of special importance to Streptococci owing to the lack of catalase in this genus of bacteria.This study was focused on structural and functional characterization of streptococcal Dpslike peroxide resistance (Dpr) proteins. Initially, crystal structures of Streptococcus pyogenes Dpr were determined. The data confirmed the presence of a di-metal ferroxidase center (FOC) in Dpr proteins and revealed the presence of a novel N-terminal helix as well as a surface metal-binding site. The crystal structures of Streptococcus suis Dpr complexed with transition metals demonstrated the metal specificity of the FOC. Solution binding studies also indicated the presence of a di-metal FOC. These results suggested a possible role for Dpr in the detoxification of various metals. Iron was found to mineralize inside the protein as ferrihydrite based on X-ray absorption spectroscopy data. The iron core was found to exhibit clear superparamagnetic behaviour using magnetic and Mössbauer measurements. The results from this study are expected to further increase our understanding on the binding, oxidation, and mineralization of iron and other metals in Dpr proteins. In particular, the structural and magnetic properties of the iron core can form a basis for potential new applications in nanotechnology. From the streptococcal viewpoint, the results would help in understanding better the complicated picture of bacterial pathogenesis. Dpr proteins may also provide a novel target for drug design due to their tight involvement in bacterial virulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, cantilever-enhanced photoacoustic spectroscopy (CEPAS) was applied in different drug detection schemes. The study was divided into two different applications: trace detection of vaporized drugs and drug precursors in the gas-phase, and detection of cocaine abuse in hair. The main focus, however, was the study of hair samples. In the gas-phase, methyl benzoate, a hydrolysis product of cocaine hydrochloride, and benzyl methyl ketone (BMK), a precursor of amphetamine and methamphetamine were investigated. In the solid-phase, hair samples from cocaine overdose patients were measured and compared to a drug-free reference group. As hair consists mostly of long fibrous proteins generally called keratin, proteins from fingernails and saliva were also studied for comparison. Different measurement setups were applied in this study. Gas measurements were carried out using quantum cascade lasers (QLC) as a source in the photoacoustic detection. Also, an external cavity (EC) design was used for a broader tuning range. Detection limits of 3.4 particles per billion (ppb) for methyl benzoate and 26 ppb for BMK in 0.9 s were achieved with the EC-QCL PAS setup. The achieved detection limits are sufficient for realistic drug detection applications. The measurements from drug overdose patients were carried out using Fourier transform infrared (FTIR) PAS. The drug-containing hair samples and drug-free samples were both measured with the FTIR-PAS setup, and the measured spectra were analyzed statistically with principal component analysis (PCA). The two groups were separated by their spectra with PCA and proper spectral pre-processing. To improve the method, ECQCL measurements of the hair samples, and studies using photoacoustic microsampling techniques, were performed. High quality, high-resolution spectra with a broad tuning range were recorded from a single hair fiber. This broad tuning range of an EC-QCL has not previously been used in the photoacoustic spectroscopy of solids. However, no drug detection studies were performed with the EC-QCL solid-phase setup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular adhesion protein-1 (VAP-1), which belongs to the copper amine oxidases (CAOs), is a validated drug target in inflammatory diseases. Inhibition of VAP-1 blocks the leukocyte trafficking to sites of inflammation and alleviates inflammatory reactions. In this study, a novel set of potent pyridazinone inhibitors is presented together with their X-ray structure complexes with VAP-1. The crystal structure of serum VAP-1 (sVAP-1) revealed an imidazole binding site in the active site channel and, analogously, the pyridazinone inhibitors were designed to bind into the channel. This is the first time human VAP-1 has been crystallized with a reversible inhibitor and the structures reveal detailed information of the binding mode on the atomic level. Similarly to some earlier studied inhibitors of human VAP-1, the designed pyridazinone inhibitors bind rodent VAP-1 with a lower affinity than human VAP-1. Therefore, we made homology models of rodent VAP-1 and compared human and rodent enzymes to determine differences that might affect the inhibitor binding. The comparison of the crystal structures of the human VAP-1 and the mouse VAP-1 homology model revealed key differences important for the species specific binding properties. In general, the channel in mouse VAP-1 is more narrow and polar than the channel in human VAP-1, which is wider and more hydrophobic. The differences are located in the channel leading to the active site, as well as, in the entrance to the active site channel. The information obtained from these studies is of great importance for the development and design of drugs blocking the activity of human VAP-1, as rodents are often used for in vivo testing of candidate drugs. In order to gain more insight into the selective binding properties of the different CAOs in one species a comprehensive evolutionary study of mammalian CAOs was performed. We found that CAOs can be classified into sub-families according to the residues X1 and X2 of the Thr/Ser-X1-X2-Asn-Tyr-Asp active site motif. In the phylogenetic tree, CAOs group into diamine oxidase, retina specific amine oxidase and VAP-1/serum amine oxidase clades based on the residue in the position X2. We also found that VAP-1 and SAO can be further differentiated based on the residue in the position X1. This is the first large-scale comparison of CAO sequences, which explains some of the reasons for the unique substrate specificities within the CAO family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptotic beta cell death is an underlying cause majorly for type I and to a lesser extent for type II diabetes. Recently, MST1 kinase was identified as a key apoptotic agent in diabetic condition. In this study, I have examined MST1 and closely related kinases namely, MST2, MST3 and MST4, aiming to tackle diabetes by exploring ways to selectively block MST1 kinase activity. The first investigation was directed towards evaluating possibilities of selectively blocking the ATP binding site of MST1 kinase that is essential for the activity of the enzymes. Structure and sequence analyses of this site however revealed a near absolute conservation between the MSTs and very few changes with other kinases. The observed residue variations also displayed similar physicochemical properties making it hard for selective inhibition of the enzyme. Second, possibilities for allosteric inhibition of the enzyme were evaluated. Analysis of the recognized allosteric site also posed the same problem as the MSTs shared almost all of the same residues. The third analysis was made on the SARAH domain, which is required for the dimerization and activation of MST1 and MST2 kinases. MST3 and MST4 lack this domain, hence selectivity against these two kinases can be achieved. Other proteins with SARAH domains such as the RASSF proteins were also examined. Their interaction with the MST1 SARAH domain were evaluated to mimic their binding pattern and design a peptide inhibitor that interferes with MST1 SARAH dimerization. In molecular simulations the RASSF5 SARAH domain was shown to strongly interact with the MST1 SARAH domain and possibly preventing MST1 SARAH dimerization. Based on this, the peptidic inhibitor was suggested to be based on the sequence of RASSF5 SARAH domain. Since the MST2 kinase also interacts with RASSF5 SARAH domain, absolute selectivity might not be achieved.