7 resultados para Drug-alcohol interactions.

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Drug-drug interactions (DDIs) comprise an important cause of adverse drug reactions leading to excess hospitalizations. Drug metabolism is catalyzed by 75% by cytochrome P450 (CYP) enzymes and thus they are often involved in pharmacokinetic DDIs. In general, DDIs are studied in randomized controlled clinical trials in selected study populations. The overall aim of the present studies was to perform observational pharmacoepidemiological surveys on CYP-mediated DDIs in diseases important at the population level. The prevalence of co-administrations of four prodrugs (losartan, codeine, tramadol, and clopidogrel), three sulphonylureas (glibenclamide, glimepiride, and glipizide), or two statins (lovastatin and simvastatin) with well established agents altering CYP activity, as well as of statins with fibrates, was studied in Finland utilizing data from a university hospital medication database (inpatients) and the National Prescription Register of the Social Insurance Institution of Finland, Kela (outpatients). Clinical consequences of potential DDIs were estimated by reviewing laboratory data, and information from hospital care and cause-of-death registers. Concomitant use of study substrates with interacting medication was detected in up to one fifth of patients in both hospital and community settings. Potential CYP3A4 interactions in statin users did not manifest in clear adverse laboratory values but pharmacodynamic DDIs between statins and fibrates predisposed patients to muscular toxicity. Sulphonylurea DDIs with CYP2C9 inhibitors increased the risk of hypoglycaemia. CYP3A4 inhibitor use with clopidogrel was not associated with significant changes in mortality but non-fatal thrombosis and haemorrhage complications were seen less often in this group. Concomitant administration of atorvastatin with clopidogrel moderately attenuated the antithrombotic effect by clopidogrel. The overall mortality was increased in CYP3A4 inducer and clopidogrel co-users. Atorvastatin used concomitantly with prodrug clopidogrel seems to be beneficial in terms of total and LDL cholesterol concentrations, and overall mortality compared with clopidogrel use without interacting medication. In conclusion, CYP-mediated DDIs are a common and often unrecognized consequence of irrational drug prescribing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alkoholberusning är en av de starkaste riskfaktorerna för aggressivt beteende. Alla individer blir dock inte aggressiva under alkoholberusning. I sin doktorsavhandling undersökte Johansson ifall individens genetiska uppsättning kan förklara skillnader i vem som reagerar på alkohol med ökat aggressivt beteende och ilska och vem som inte gör det. Resultaten visade att individer som är bärare av en viss variant av genen som kodar för oxytocinets receptorer är i högre grad benägna att uppvisa aggressivt beteende än andra när de är alkoholberusade. Sambandet mellan alkohol och ilska påverkades även av individens genetiska uppsättning av två oxytocinreceptorgenvarianter, vilket antyder att dessa genvarianter även påverkar benägenheten att känna ilska under alkoholberusning. Oxytocinet, som fungerar både som ett hormon och en neurotransmittor, har i tidigare studier visats ha breda effekter på sociala förmågor hos människan, såsom förmåga till igenkännande av andras känslouttryck. Resultaten är de första att hos människan experimentellt påvisa att vissa individer beter sig mer aggressivt än andra när de är berusade, beroende på individens genetiska uppsättning. ”Det är viktigt att komma ihåg att genens effekt i det här fallet inte är av en sådan natur att den direkt och ofrånkomligen orsakar aggressivt beteende. Med andra ord är det orimligt i detta fall att tänka att en individ skulle tillmätas ansvarsfrihet i exempelvis ett våldsbrottmål om hon bär på en viss variant av denna gen”, påpekar Johansson. Oxytocinreceptorgenens effekter analyserades i två olika urval. I ett experimentellt upplägg indelades 116 män slumpässigt i två grupper: en grupp som tilldelades alkoholhaltiga drycker, och en kontrollgrupp som tilldelades alkoholfria drycker. Aggressivt beteende mättes med ett laboratorietest där försökspersonerna fick bestraffa en fiktiv motspelare genom att spela upp motbjudande ljud för denne. Resultaten replikerades i ett populationsbaserat urval av män och kvinnor (n = 3755) vilka besvarat frågor om deras aggressiva beteenden, ilska, och alkoholanvändning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vascular adhesion protein-1 (VAP-1), which belongs to the copper amine oxidases (CAOs), is a validated drug target in inflammatory diseases. Inhibition of VAP-1 blocks the leukocyte trafficking to sites of inflammation and alleviates inflammatory reactions. In this study, a novel set of potent pyridazinone inhibitors is presented together with their X-ray structure complexes with VAP-1. The crystal structure of serum VAP-1 (sVAP-1) revealed an imidazole binding site in the active site channel and, analogously, the pyridazinone inhibitors were designed to bind into the channel. This is the first time human VAP-1 has been crystallized with a reversible inhibitor and the structures reveal detailed information of the binding mode on the atomic level. Similarly to some earlier studied inhibitors of human VAP-1, the designed pyridazinone inhibitors bind rodent VAP-1 with a lower affinity than human VAP-1. Therefore, we made homology models of rodent VAP-1 and compared human and rodent enzymes to determine differences that might affect the inhibitor binding. The comparison of the crystal structures of the human VAP-1 and the mouse VAP-1 homology model revealed key differences important for the species specific binding properties. In general, the channel in mouse VAP-1 is more narrow and polar than the channel in human VAP-1, which is wider and more hydrophobic. The differences are located in the channel leading to the active site, as well as, in the entrance to the active site channel. The information obtained from these studies is of great importance for the development and design of drugs blocking the activity of human VAP-1, as rodents are often used for in vivo testing of candidate drugs. In order to gain more insight into the selective binding properties of the different CAOs in one species a comprehensive evolutionary study of mammalian CAOs was performed. We found that CAOs can be classified into sub-families according to the residues X1 and X2 of the Thr/Ser-X1-X2-Asn-Tyr-Asp active site motif. In the phylogenetic tree, CAOs group into diamine oxidase, retina specific amine oxidase and VAP-1/serum amine oxidase clades based on the residue in the position X2. We also found that VAP-1 and SAO can be further differentiated based on the residue in the position X1. This is the first large-scale comparison of CAO sequences, which explains some of the reasons for the unique substrate specificities within the CAO family.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Apoptotic beta cell death is an underlying cause majorly for type I and to a lesser extent for type II diabetes. Recently, MST1 kinase was identified as a key apoptotic agent in diabetic condition. In this study, I have examined MST1 and closely related kinases namely, MST2, MST3 and MST4, aiming to tackle diabetes by exploring ways to selectively block MST1 kinase activity. The first investigation was directed towards evaluating possibilities of selectively blocking the ATP binding site of MST1 kinase that is essential for the activity of the enzymes. Structure and sequence analyses of this site however revealed a near absolute conservation between the MSTs and very few changes with other kinases. The observed residue variations also displayed similar physicochemical properties making it hard for selective inhibition of the enzyme. Second, possibilities for allosteric inhibition of the enzyme were evaluated. Analysis of the recognized allosteric site also posed the same problem as the MSTs shared almost all of the same residues. The third analysis was made on the SARAH domain, which is required for the dimerization and activation of MST1 and MST2 kinases. MST3 and MST4 lack this domain, hence selectivity against these two kinases can be achieved. Other proteins with SARAH domains such as the RASSF proteins were also examined. Their interaction with the MST1 SARAH domain were evaluated to mimic their binding pattern and design a peptide inhibitor that interferes with MST1 SARAH dimerization. In molecular simulations the RASSF5 SARAH domain was shown to strongly interact with the MST1 SARAH domain and possibly preventing MST1 SARAH dimerization. Based on this, the peptidic inhibitor was suggested to be based on the sequence of RASSF5 SARAH domain. Since the MST2 kinase also interacts with RASSF5 SARAH domain, absolute selectivity might not be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enantiopure intermediates are of high value in drug synthesis. Biocatalysis alone or combined with chemical synthesis provides powerful tools to access enantiopure compounds. In biocatalysis, chemo-, regio- and enantioselectivity of enzymes are combined with their inherent environmentally benign nature. Enzymes can be applied in versatile chemical reactions with non-natural substrates under synthesis conditions. Immobilization of an enzyme is a crucial part of an efficient biocatalytic synthesis method. Successful immobilization enhances the catalytic performance of an enzyme and enables its reuse in successive reactions. This thesis demonstrates the feasibility of biocatalysis in the preparation of enantiopure secondary alcohols and primary amines. Viability and synthetic usability of the studied biocatalytic methods have been addressed throughout this thesis. Candida antarctica lipase B (CAL-B) catalyzed enantioselective O-acylation of racemic secondary alcohols was successfully incorporated with in situ racemization in the dynamic kinetic resolution, affording the (R)-esters in high yields and enantiopurities. Side reactions causing decrease in yield and enantiopurity were suppressed. CAL-B was also utilized in the solvent-free kinetic resolution of racemic primary amines. This method produced the enantiomers as (R)-amides and (S)-amines under ambient conditions. An in-house sol-gel entrapment increased the reusability of CAL-B. Arthrobacter sp. omega-transaminase was entrapped in sol-gel matrices to obtain a reusable catalyst for the preparation enantiopure primary amines in an aqueous medium. The obtained heterogeneous omega-transaminase catalyst enabled the enantiomeric enrichment of the racemic amines to their (S)-enantiomers. The synthetic usability of the sol-gel catalyst was demonstrated in five successive preparative kinetic resolutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrins are cell surface adhesion and signaling receptors. Cells use integrins to attach to the extracellular matrix and to other cells, as well as for sensing their environment. In addition to adhesion and migration, integrins have been shown to be important for many biological processes including apoptosis, cell proliferation, and differentiation into specific tissues. Many important next generation biological drugs inhibit integrin functions. Thus, research into interactions between integrins and their ligands under different physiological and pathological conditions is not only of academic interest, but is also important for the field of drug discovery. In this Ph.D. project, the functions of integrin-ligand interactions were studied under different physiologically interesting conditions including 1) human echovirus 1 binding to integrin α2β1, 2) integrin α2β1 binding to collagen under flow conditions, 3) integrin α2β1 binding to a ligand in the presence of the angiogenesis inhibitor histidine rich glycoprotein (HRG) and 4) integrin binding to posttranslationally citrullinated ligands. As a result of the project, we could show that for each condition the integrin-ligand interaction is somewhat unconventional. 1) Echovirus 1 binds only to non-activated conformations of integrin α2β1. 2) Surprisingly, the non-activated conformation is also the primary conformation of integrin α2β1 when it binds to collagen under flow conditions, like when platelets adhere to subendothelial collagen in vascular injuries. In addition, the pre-activation of integrin α2β1 does not increase adhesion under flow. 3) HRG binds to integrin α2β1 through a low-affinity interaction that inhibits integrin binding to collagen. This shows that low affinity interactions could be biologically relevant and possibly regulate angiogenesis. 4) The citrullination of collagen, a posttranslational modification reported to occur in rheumatoid arthritis, specifically inhibits the binding of integrin α10β1 and α11β1, but does not affect the binding of α1β1 ja α2β1. On the other hand, the citrullination of isoDGR in fibronectin and RGD in pro-TGF- β:n inhibit integrin binding completely. Citrullination seems to be an inflammation related process and integrin ligands become citrullinated frequently in vivo. This Ph.D. thesis suggests that unconventional interaction mechanisms between integrins and their ligands, such as posttranslational modifications, low affinity interactions, and non-activated integrin conformations, can have an important role in pathological processes. The study of these kinds of integrin-ligand interactions is important for understanding biological phenomena more deeply. The research might also be beneficial for the development of integrin based therapies for treating diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.