4 resultados para Drill
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In the drilling processes and especially deep-hole drilling process, the monitoring system and having control on mechanical parameters (e.g. Force, Torque,Vibration and Acoustic emission) are essential. The main focus of this thesis work is to study the characteristics of deep-hole drilling process, and optimize the monitoring system for controlling the process. The vibration is considered as a major defect area of the deep-hole drilling process which often leads to breakage of the drill, therefore by vibration analysis and optimizing the workpiecefixture, this area is studied by finite element method and the suggestions are explained. By study on a present monitoring system, and searching on the new sensor products, the modifications and recommendations are suggested for optimize the present monitoring system for excellent performance in deep-hole drilling process research and measurements.
Resumo:
Työn tavoitteena oli selvittää kaupallisen dynamiikan simulointiohjelmiston soveltuvuus kallioporakoneen dynamiikan analysointiin. Työssä mallinnettiin parametrisoitu virtuaaliprototyyppi uudenlaisella toimintaperiaatteella toimivasta kallioporakoneesta. Virtuaaliprototyyppiä on tarkoitus käyttää fyysisen prototyypin mitoituksessa sekä porakoneen toiminnan simuloinnissa ja suorituskyvyn arvioinnissa ennen ensimmäisen fyysisen prototyypin valmistamista. Mallinnus tehtiin ADAMS -ohjelmistoa ja siihen liitettävää ADAMS/Hydraulics -moduulia käyttäen. Mallinnuksessa kiinnitettiin huomiota erityisesti porakoneessa esiintyvien vuotovirtauksien huomioimiseen. ADAMS -ohjelmisto soveltuu hyvin hydraulisen iskuporakoneen dynaamisten ilmiöiden simulointiin. Koska fyysistä prototyyppiä ei ole vielä olemassa, ei mallin toimintaa voida kuitenkaan tämän tutkimuksen puitteissa verifioida mittauksin. Simuloitujen tulosten perusteella voidaan todeta uuden toimintaperiaatteen olevan käyttökelpoinen kallion poraukseen. Parametrisoitua virtuaaliprototyyppiä voidaan käyttää tehokkaasti hyväksi tuotekehitysvaiheessa sekä se voidaan liittää osaksi laajempaa ja yksityiskohtaisempaa porauslaitteen simulointimallia.
Resumo:
Diplomityön tarkoituksena on selvittää hitsauksen robotisointimahdollisuudet vakiintuneelle piensarjatuotteelle. Tarkastelun kohteeksi valittiin maanpäällisen porausyksikön runkopari, joka rakentuu ylä- ja alarungosta. Hitsaus on nykytilanteessa käsinhitsausta ja tuotetta tehdään noin 300 kpl / vuosi. Hitsauksen robotisoinnilla halutaan aikaansaada kustannussäästöä hitsauksen osalta ja tuotantokapasiteetin nousua. Työn teoriaosa voidaan jakaa neljään osaan: hitsaustekniikka, robottihitsattava tuote, robotisoituhitsaus ja investointilaskelmat. Hitsaustekniikassa lähdetään liikkeelle hitsauksen kannalta oleellisimmista perusasioista, jolloin lukijalle syntyy laajempi kokonaiskuva asiasta. Hitsauksen robotisointia suunniteltaessa korostuu tuotteen hitsattavuus. Hyvin suunniteltu tuote mahdollistaa robotisoidun hitsauksen ja luo edellytykset laadukkaalle, taloudelliselle ja tuottavalle hitsaukselle. Robotisoidun hitsauksen osassa rakennetaan kokonaisuus, jolloin lopputuloksena on tehokas robottijärjestelmä. Samalla käsitellään sekä varsinaista hitsausteknistä toteutusta että robottijärjestelmän komponentteja. Investointilaskelmien avulla varmistetaan robottijärjestelmän ja koko tuotantoketjun kannattavuus. Käytännön osuudessa selvitetään robotisoidun hitsauksen mahdollisuudet valitulle tuotteelle ja robotisoinnin aikaansaamat kustannussäästöt. Tuotteen ylärungosta valitaan etuosa tarkempaa CASE tyylistä tarkastelua varten. CASE:ssa käydään läpi etuosan valmistettavuus ja selvitetään robotisoinnista aikaansaamat säästöt. Investointilaskelmien avulla selvitetään käytännön osuudessa robotisoidun hitsauksen kannattavuus tietyille robottijärjestelmille.
Resumo:
Novel biomaterials are needed to fill the demand of tailored bone substitutes required by an ever‐expanding array of surgical procedures and techniques. Wood, a natural fiber composite, modified with heat treatment to alter its composition, may provide a novel approach to the further development of hierarchically structured biomaterials. The suitability of wood as a model biomaterial as well as the effects of heat treatment on the osteoconductivity of wood was studied by placing untreated and heat‐treated (at 220 C , 200 degrees and 140 degrees for 2 h) birch implants (size 4 x 7mm) into drill cavities in the distal femur of rabbits. The follow‐up period was 4, 8 and 20 weeks in all in vivo experiments. The flexural properties of wood as well as dimensional changes and hydroxyl apatite formation on the surface of wood (untreated, 140 degrees C and 200 degrees C heat‐treated wood) were tested using 3‐point bending and compression tests and immersion in simulated body fluid. The effect of premeasurement grinding and the effect of heat treatment on the surface roughness and contour of wood were tested with contact stylus and non‐contact profilometry. The effects of heat treatment of wood on its interactions with biological fluids was assessed using two different test media and real human blood in liquid penetration tests. The results of the in vivo experiments showed implanted wood to be well tolerated, with no implants rejected due to foreign body reactions. Heat treatment had significant effects on the biocompatibility of wood, allowing host bone to grow into tight contact with the implant, with occasional bone ingrowth into the channels of the wood implant. The results of the liquid immersion experiments showed hydroxyl apatite formation only in the most extensively heat‐treated wood specimens, which supported the results of the in vivo experiments. Parallel conclusions could be drawn based on the results of the liquid penetration test where human blood had the most favorable interaction with the most extensively heat‐treated wood of the compared materials (untreated, 140 degrees C and 200 degrees C heat‐treated wood). The increasing biocompatibility was inferred to result mainly from changes in the chemical composition of wood induced by the heat treatment, namely the altered arrangement and concentrations of functional chemical groups. However, the influence of microscopic changes in the cell walls, surface roughness and contour cannot be totally excluded. The heat treatment was hypothesized to produce a functional change in the liquid distribution within wood, which could have biological relevance. It was concluded that the highly evolved hierarchical anatomy of wood could yield information for the future development of bulk bone substitutes according to the ideology of bioinspiration. Furthermore, the results of the biomechanical tests established that heat treatment alters various biologically relevant mechanical properties of wood, thus expanding the possibilities of wood as a model material, which could include e.g. scaffold applications, bulk bone applications and serving as a tool for both mechanical testing and for further development of synthetic fiber reinforced composites.