38 resultados para Dislocations in metals
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Diplomityön tarkoituksena oli löytää keino korkean mangaanipitoisuuden hallintaan ECF-valkaisussa. Kirjallisuusosassa käsiteltiin eri metallien ja kuidun vuorovaikutuksia sekä niiden vaikutuksia prosessiin. Lisäksi käytiin läpi sellunvalmituksen yleisimpiä metallienhallintamenetelmiä. Työn kokeellisessa osassa tehtiin esikokeina laboratoriokokeita, jotta löydettiin oikeat kelatointistrategiat tehdasmittakaavan koeajoille. Laboratoriovalkaisut suoritettiin kuudella eri kemikaalilla käyttäen DD3-pesurin jälkeistä massaa ja samanlaisia parametrejä kuin tehdasvalkaisussa. Kolmesta eri valkaisusekvenssistä paras tulos saavutettiin D0-QEP-sekvenssillä. Tehdasmittakaavan koeajojen tavoitteena oli saavuttaa alle 1 mg/kg jäännösmangaanipitoisuus valkaistussa massassa ja korkeampi vaaleus EOP-vaiheessa pienemmällä klooridioksidin kulutuksella. Koeajoissa käytettiinDTPA:ta ja EDTA:ta kahdeksassa eri koepisteessä. Pienimpiin jäännöspitoisuuksiin päästiin koepisteissä, joissa kelatointiaine annosteltiin ennen valkaisun viimeistä pesuvaihetta tai sen jälkeen. Samanlaisia tuloksia saavutettiin koepisteissä, joissa kelatointiaine lisättiin suoraan EOP-vaiheeseen. Tällöin kelatointiaineen käyttö johti myös korkeampaan vaaleuteen EOP-vaiheessa pienemmällä kappakertoimella kuin referenssissä. Säästöt klooridioksidin kulutuksessa eivät olleet kuitenkaan tarpeeksi suuret kattaakseen kelatointiaineiden käytön kustannuksia. Kustannustehokkain tapa kontrolloida jäännösmangaanipitoisuutta oli EDTA:n annostelu D2 DD-pesurin jälkeen. Haittapuolena tälläisessä kelatoinnissa oli metallikompleksien palautuminen valkaisuun kuivauskoneen kiertoveden mukana. Tärkeimmät onnistuneeseen kelatointiin vaikuttavat parametrit olivat lajittelussa käytetyn rikkihapon annos, D0-vaiheen pH ja D0 DD-pesurin pesutehokkuus.
Resumo:
The made research is focused on possibility of application of non ferrous metals in boiler pressure parts as a substitute of currently used ferrous-base alloys. The main issue was to define resistive ability of some perspective non ferrous metals to chlorine induced corrosion. Experimental study was performed using simultaneous thermal analysis (STA) in the temperature range of 400-700 °C. The chloride induced corrosion was simulated by mixtures of metal samples with potassium chloride treated by synthetic air. The advantage of synergetic effect of non ferrous alloys compare to single metals is shown due to the obtained data from conducted thermal balance tests.
Resumo:
The aim of this thesis is to search how to match the demand and supply effectively in industrial and project-oriented business environment. The demand-supply balancing process is searched through three different phases: the demand planning and forecasting, synchronization of demand and supply and measurement of the results. The thesis contains a single case study that has been implemented in a company called Outotec. In the case study the demand is planned and forecasted with qualitative (judgmental) forecasting method. The quantitative forecasting methods are searched further to support the demand forecast and long term planning. The sales and operations planning process is used in the synchronization of the demand and supply. The demand forecast is applied in the management of a supply chain of critical unit of elemental analyzer. Different meters on operational and strategic level are proposed for the measurement of performance.
Resumo:
Selostus: Kasvien raskasmetallien otto ilmasta ja saastuneesta maasta
Resumo:
Fiber damages comprise fiber deformations, characterized as fiber curl, kink, dislocations and strength losses as well as some yet unidentified factors. This recently discovered phenomenon is especially evident in mill scale kraftpulps. Laboratory produced pulps tend to have less damages and superior strength properties compared to those produced in pulp mills. Generally fiber damages pose a problem in the production of reinforcement pulp because they tend to decrease the ability of fibers to transmit load. Previous studies on fiber damage have shown that most of the fiber damages occur during brown stock processing starting from cooking and discharging. This literature review gives an overall picture on fiber damages occurring during softwood kraft pulp production with an emphasis on the oxygen delignification stage. In addition the oxygen delignification stage itself is described in more detailed extent in order to understand the mechanisms behind the delignification and fiber damaging effect. The literature available on this subject is unfortunately quite contradictory and implicates a lotof different terms. Only a few studies have been published which help to understand the nature of fiber damages. For that reason the knowledge presented in this work is not only based on previous studies but also on research scientist and mill staff interviews.
Resumo:
Environmentally harmful consequences of fossil fuel utilisation andthe landfilling of wastes have increased the interest among the energy producers to consider the use of alternative fuels like wood fuels and Refuse-Derived Fuels, RDFs. The fluidised bed technology that allows the flexible use of a variety of different fuels is commonly used at small- and medium-sized power plants ofmunicipalities and industry in Finland. Since there is only one mass-burn plantcurrently in operation in the country and no intention to build new ones, the co-firing of pre-processed wastes in fluidised bed boilers has become the most generally applied waste-to-energy concept in Finland. The recently validated EU Directive on Incineration of Wastes aims to mitigate environmentally harmful pollutants of waste incineration and co-incineration of wastes with conventional fuels. Apart from gaseous flue gas pollutants and dust, the emissions of toxic tracemetals are limited. The implementation of the Directive's restrictions in the Finnish legislation is assumed to limit the co-firing of waste fuels, due to the insufficient reduction of the regulated air pollutants in the existing flue gas cleaning devices. Trace metals emission formation and reduction in the ESP, the condensing wet scrubber, the fabric filter, and the humidification reactor were studied, experimentally, in full- and pilot-scale combustors utilising the bubbling fluidised bed technology, and, theoretically, by means of reactor model calculations. The core of the model is a thermodynamic equilibrium analysis. The experiments were carried out with wood chips, sawdust, and peat, and their refuse-derived fuel, RDF, blends. In all, ten different fuels or fuel blends were tested. Relatively high concentrations of trace metals in RDFs compared to the concentrations of these metals in wood fuels increased the trace metal concentrations in the flue gas after the boiler ten- to hundred-folds, when RDF was co-fired with sawdust in a full-scale BFB boiler. In the case of peat, lesser increase in trace metal concentrations was observed, due to the higher initial trace metal concentrations of peat compared to sawdust. Despite the high removal rate of most of the trace metals in the ESP, the Directive emission limits for trace metals were exceeded in each of the RDF co-firing tests. The dominat trace metals in fluegas after the ESP were Cu, Pb and Mn. In the condensing wet scrubber, the flue gas trace metal emissions were reduced below the Directive emission limits, whenRDF pellet was used as a co-firing fuel together with sawdust and peat. High chlorine content of the RDFs enhanced the mercuric chloride formation and hence the mercury removal in the ESP and scrubber. Mercury emissions were lower than theDirective emission limit for total Hg, 0.05 mg/Nm3, in all full-scale co-firingtests already in the flue gas after the ESP. The pilot-scale experiments with aBFB combustor equipped with a fabric filter revealed that the fabric filter alone is able to reduce the trace metal concentrations, including mercury, in the flue gas during the RDF co-firing approximately to the same level as they are during the wood chip firing. Lower trace metal emissions than the Directive limits were easily reached even with a 40% thermal share of RDF co-firing with sawdust.Enrichment of trace metals in the submicron fly ash particle fraction because of RDF co-firing was not observed in the test runs where sawdust was used as the main fuel. The combustion of RDF pellets with peat caused an enrichment of As, Cd, Co, Pb, Sb, and V in the submicron particle mode. Accumulation and release oftrace metals in the bed material was examined by means of a bed material analysis, mass balance calculations and a reactor model. Lead, zinc and copper were found to have a tendency to be accumulated in the bed material but also to have a tendency to be released from the bed material into the combustion gases, if the combustion conditions were changed. The concentration of the trace metal in the combustion gases of the bubbling fluidised bed boiler was found to be a summary of trace metal fluxes from three main sources. They were (1) the trace metal flux from the burning fuel particle (2) the trace metal flux from the ash in the bed, and (3) the trace metal flux from the active alkali metal layer on the sand (and ash) particles in the bed. The amount of chlorine in the system, the combustion temperature, the fuel ash composition and the saturation state of the bed material in regard to trace metals were discovered to be key factors affecting therelease process. During the co-firing of waste fuels with variable amounts of e.g. ash and chlorine, it is extremely important to consider the possible ongoingaccumulation and/or release of the trace metals in the bed, when determining the flue gas trace metal emissions. If the state of the combustion process in regard to trace metals accumulation and/or release in the bed material is not known,it may happen that emissions from the bed material rather than the combustion of the fuel in question are measured and reported.
Resumo:
Zinc selenide is a prospective material for optoelectronics. The fabrication of ZnSebased light-emitting diodes is hindered by complexity of p-type doping of the component materials. The interaction between native and impurity defects, the tendency of doping impurity to form associative centres with native defects and the tendency to self-compensation are the main factors impeding effective control of the value and type of conductivity. The thesis is devoted to the study of the processes of interaction between native and impurity defects in zinc selenide. It is established that the Au impurity has the most prominent amphoteric properties in ZnSe among Cu, Ag and Au impurities, as it forms a great number of both Au; donors and Auz„ acceptors. Electrical measurements show that Ag and Au ions introduced into vacant sites of the Zn sublattice form simple single-charged Agz„+ and Auzn+ states with d1° electron configuration, while Cu ions can form both single-charged Cuz„ (d1) and double-charged Cuzr`+ (d`o) centres. Amphoteric properties of Ag and Au transition metals stimulated by time are found for the first time from both electrical and luminescent measurements. A model that explains the changes in electrical and luminescent parameters by displacement of Ag ions into interstitial sites due to lattice deformation forces is proposed. Formation of an Ag;-donor impurity band in ZnSe samples doped with Ag and stored at room temperature is also studied. Thus, the properties of the doped samples are modified due to large lattice relaxation during aging. This fact should be taken into account in optoelectronic applications of doped ZnSe and related compounds.
Resumo:
The results and discussions in this thesis are based on my studies about selfassembled thiol layers on gold, platinum, silver and copper surfaces. These kinds of layers are two-dimensional, one molecule thick and covalently organized at the surface. They are an easy way to modify surface properties. Self-assembly is today an intensive research field because of the promise it holds for producing new technology at nanoscale, the scale of atoms and molecules. These kinds of films have applications for example, in the fields of physics, biology, engineering, chemistry and computer science. Compared to the extensive literature concerning self-assembled monolayers (SAMs) on gold, little is known about the structure and properties of thiolbased SAMs on other metals. In this thesis I have focused on thiol layers on gold, platinum, silver and copper substrates. These studies can be regarded as a basic study of SAMs. Nevertheless, an understanding of the physical and chemical nature of SAMs allows the correlation between atomic structure and macroscopic properties. The results can be used as a starting point for many practical applications. X-ray photoelectron spectroscopy (XPS) and synchrotron radiation excited high resolution photoelectron spectroscopy (HR-XPS) together with time-offlight secondary ion mass spectrometry (ToF-SIMS) were applied to investigate thin organic films formed by the spontaneous adsorption of molecules on metal surfaces. Photoelectron spectroscopy was the main method used in these studies. In photoelectron spectroscopy, the sample is irradiated with photons and emitted photoelectrons are energy-analyzed. The obtained spectra give information about the atomic composition of the surface and about the chemical state of the detected elements. It is widely used in the study of thin layers and is a very powerful tool for this purpose. Some XPS results were complemented with ToF-SIMS measurements. It provides information on the chemical composition and molecular structure of the samples. Thiol (1-Dodecanethiol, CH3(CH2)11SH) solution was used to create SAMs on metal substrates. Uniform layers were formed on most of the studied metal surfaces. On platinum, surface aligned molecules were also detected in investigations by XPS and ToF-SIMS. The influence of radiation on the layer structure was studied, leading to the conclusion that parts of the hydrocarbon chains break off due to radiation and the rest of the layer is deformed. The results obtained showed differences depending on the substrate material. The influence of oxygen on layer formation was also studied. Thiol molecules were found to replace some of the oxygen from the metal surfaces.
Resumo:
This work gives a reader basic knowledge about mineralogy and mineral processing. Main focus of this work was on flotation process and pulp electrochemistry on flotation. Three different sulphide poor ores are examined on experimental part. Platinum and palladium were the noble metals, which were contained into studied ores. Electrochemistry of flotation of PGE minerals on sulphide poor ores has been examined only slightly. Bench scale flotation test was used in this study. Chalcopyrite, nickel-pentlandite, pyrite, platinum and pH electrodes were used to investigation of pulp electrochemistry during flotation tests. Effects of grinding media, carbon dioxide atmosphere in grinding and mixture of carbon dioxide and air as flotation gas to PGE flotation and electrochemistry of flotation were studied. Stainless steel grinding media created more oxidising pulp environment to flotation than mild steel grinding media. Concentrate quality improved also with stainless steel grinding media, but the recovery was remarkably poorer, than with mild steel grinding media. Carbon dioxide atmosphere in grinding created very reducing pulp environment, which caused very good concentrate quality. But the recovery was again poorer than with normal mild steel grinding media. Mixture of carbon dioxide and air as flotation gas improved PGE recovery with some ores, but not always. Effect of carbon dioxide to pulp electrochemistry was detected mainly via pH-value.
Resumo:
The Gulf of Finland is said to be one of the densest operated sea areas in the world. It is a shallow and economically vulnerable sea area with dense passenger and cargo traffic of which petroleum transports have a share of over 50 %. The winter conditions add to the risks of maritime traffic in the Gulf of Finland. It is widely believed that the growth of maritime transportation will continue also in the future. The Gulf of Finland is surrounded by three very different national economies with, different maritime transportation structures. Finland is a country of high GDP/per capita with a diversified economic structure. The number of ports is large and the maritime transportation consists of many types of cargoes: raw materials, industrial products, consumer goods, coal and petroleum products, and the Russian transit traffic of e.g. new cars and consumer goods. Russia is a large country with huge growth potential; in recent years, the expansion of petroleum exports has lead to a strong economic growth, which is also apparent in the growth of maritime transports. Russia has been expanding its port activities in the Gulf of Finland and it is officially aiming to transport its own imports and exports through the Russian ports in the future; now they are being transported to great extend through the Finnish, Estonian and other Baltic ports. Russia has five ports in the Gulf of Finland. Estonia has also experienced fast economic growth, but the growth has been slowing down already during the past couples of years. The size of its economy is small compared to Russia, which means the transported tonnes cannot be very massive. However, relatively large amounts of the Russian petroleum exports have been transported through the Estonian ports. The future of the Russian transit traffic in Estonia looks nevertheless uncertain and it remains to be seen how it will develop and if Estonia is able to find replacing cargoes if the Russian transit traffic will come to an end in the Estonian ports. Estonia’s own import and export consists of forestry products, metals or other raw materials and consumer goods. Estonia has many ports on the shores of the Gulf of Finland, but the port of Tallinn dominates the cargo volumes. In 2007, 263 M tonnes of cargoes were transported in the maritime traffic in the Gulf of Finland, of which the share of petroleum products was 56 %. 23 % of the cargoes were loaded or unloaded in the Finnish ports, 60 % in the Russian ports and 17 % in the Estonian ports. The largest ports were Primorsk (74.2 M tonnes) St. Petersburg (59.5 M tonnes), Tallinn (35.9 M tonnes), Sköldvik (19.8 M tonnes), Vysotsk (16.5 M tonnes) and Helsinki (13.4 M) tonnes. Approximately 53 600 ship calls were made in the ports of the Gulf of Finland. The densest traffic was found in the ports of St. Petersburg (14 651 ship calls), Helsinki (11 727 ship calls) and Tallinn (10 614 ship calls) in 2007. The transportation scenarios are usually based on the assumption that the amount of transports follows the development of the economy, although also other factors influence the development of transportation, e.g. government policy, environmental aspects, and social and behavioural trends. The relationship between the development of transportation and the economy is usually analyzed in terms of the development of GDP and trade. When the GDP grows to a certain level, especially the international transports increase because countries of high GDP produce, consume and thus transport more. An effective transportation system is also a precondition for the economic development. In this study, the following factors were taken into consideration when formulating the future scenarios: maritime transportation in the Gulf of Finland 2007, economic development, development of key industries, development of infrastructure and environmental aspects in relation to maritime transportation. The basic starting points for the three alternative scenarios were: • the slow growth scenario: economic recession • the average growth scenario: economy will recover quickly from current instability • the strong growth scenario: the most optimistic views on development will realize According to the slow growth scenario, the total tonnes for the maritime transportation in the Gulf of Finland would be 322.4 M tonnes in 2015, which would mean a growth of 23 % compared to 2007. In the average growth scenario, the total tonnes were estimated to be 431.6 M tonnes – a growth of 64 %, and in the strong growth scenario 507.2 M tonnes – a growth of 93%. These tonnes were further divided into petroleum products and other cargoes by country, into export, import and domestic traffic by country, and between the ports. For petroleum products, the share of crude oil and oil products was estimated and the number of tanker calls in 2015 was calculated for each scenario. However, the future development of maritime transportation in the GoF is dependent on so many societal and economic variables that it is not realistic to predict one exact point estimate value for the cargo tonnes for a certain scenario. Plenty of uncertainty is related both to the degree in which the scenario will come true as well as to the cause-effect relations between the different variables. For these reasons, probability distributions for each scenario were formulated by an expert group. As a result, a range for the total tonnes of each scenario was formulated and they are as follows: the slow growth scenario: 280.8 – 363 M tonnes (expectation value 322.4 M tonnes)
Resumo:
In this thesis, equilibrium and dynamic sorption properties of weakly basic chelating adsorbents were studied to explain removal of copper, nickel from a concentrated zinc sulfate solution in a hydrometallurgical process. Silica-supported chelating composites containing either branched poly(ethyleneimine) (BPEI) or 2-(aminomethyl)pyridine (AMP) as a functional group were used. The adsorbents are commercially available from Purity Systems Inc, USA as WP-1® and CuWRAM®, respectively. The fundamental interactions between the adsorbents, sulfuric acid and metal sulfates were studied in detail and the results were used to find the best conditions for removal of copper and nickel from an authentic ZnSO4 process solution. In particular, the effect of acid concentration and temperature on the separation efficiency was considered. Both experimental and modeling aspectswere covered in all cases. Metal sorption is considerably affected by the chemical properties of the studied adsorbents and by the separation conditions. In the case of WP-1, acid affinity is so high that column separation of copper, nickel and zinc has to be done using the adsorbent in base-form. On the other hand, the basicity of CuWRAM is significantly lower and protonated adsorbent can be used. Increasing temperature decreases the basicity and the metals affinity of both adsorbents, but the uptake capacities remain practically unchanged. Moreover, increasing temperature substantially enhances intra-particle mass transport and decreases viscosities thus allowing significantly higher feed flow rates in the fixed-bed separation. The copper selectivity of both adsorbents is very high even in the presence of a 250-fold excess of zinc. However, because of the basicity of WP-1, metal precipitation is a serious problem and therefore only CuWRAM is suitable for the practical industrial application. The optimum temperature for copper removal appears to be around 60 oC and an alternative solution purification method is proposed. The Ni/Zn selectivity of both WP-1 and CuWRAM is insufficient for removal of the very small amounts of nickel present in the concentrated ZnSO4 solution.
Resumo:
Russia has been one of the fastest developing economic areas in the world. Based on the GDP, the Russian economy grew evenly since the crisis in 1998 up till 2008. The growth in the gross domestic product has annually been some 5–10%. In 2007, the growth reached 8.1%, which is the highest figure after the 10% growth in 2000. Due to the growth of the economy and wage levels, purchasing power and consumption have been strongly increasing. The growing consumption has especially increased the imports of durables, such as passenger cars, domestic appliances and electronics. The Russian ports and infrastructure have not been able to satisfy the growing needs of exports and imports, which is why quite a large share of Russian foreign trade is going through third countries as transit transports. Finnish ports play a major role in transit transports to and from Russia. About 15% of the total value of Russian imports was transported through Finland in 2008. The economic recession that started in autumn 2008 and continues to date has had an impact on the economic development of Russia. The export income has decreased, mainly due to the reduced world market prices of energy products (oil and gas) and raw minerals. Investments have been postponed, getting credit is more difficult than before, and the ruble has weakened in relation to the euro and the dollar. The imports are decreasing remarkably, and are not forecast to reach the 2008 volumes even in 2012. The economic crisis is reflected in Finland's transit traffic. The volume of goods transported through Finland to and from Russia has decreased almost in the same proportion as the imports of goods to Russia. The biggest risk threatening the development of the Russian economy over long term is its dependence on export income from oil, gas, metals, minerals and forest products, as well as the trends of the world market prices of these products. Nevertheless, it is expected that the GDP of Russia will start to grow again in the forthcoming years due to the increased demand for energy products and raw minerals in the world. At the same time, it is obvious that the world market prices of these products will go up with the increasing demand. The increased income from exports will lead to a growth of imports, especially those of consumer goods, as the living standard of Russian citizens rises. The forecasts produced by the Russian Government concerning the economic development of Russia up till 2030 also indicate a shift in exported goods from raw materials to processed products, which together with energy products will become the main export goods of Russia. As a consequence, Russia may need export routes through third countries, which can be seen as an opportunity for increased transit transports through the ports of Finland. The ports competing with the ports of Finland for Russian foreign trade traffic are the Russian Baltic Sea ports and the ports of the Baltic countries. The strongest competitors are the Baltic Sea ports handling containers. On the Russian Baltic Sea, these ports include Saint Petersburg, Kaliningrad and, in the near future, the ports of Ust-Luga and possibly Vyborg. There are plans to develop Ust-Luga and Vyborg as modern container ports, which would become serious competitors to the Finnish ports. Russia is aiming to redirect as large a share as possible of foreign trade traffic to its own ports. The ports of Russia and the infrastructure associated with them are under constant development. On the other hand, the logistic capacity of Russia is not able to satisfy the continually growing needs of the Russian foreign trade. The capacity problem is emphasized by a structural incompatibility between the exports and imports in the Russian foreign trade. Russian exports can only use a small part of the containers brought in with imports. Problems are also caused by the difficult ice conditions and narrow waterways leading to the ports. It is predicted that Finland will maintain its position as a transit route for the Russian foreign trade, at least in the near future. The Russian foreign trade is increasing, and Russia will not be able to develop its ports in proportion with the increasing foreign trade. With the development of port capacity, cargo flows through the ports of Russia will grow. Structural changes in transit traffic are already visible. Firms are more and more relocating their production to Russia, for example as regards the assembly of cars and warehousing services. Simultaneously, an increasing part of transit cargoes are sent directly to Russia without unloading and reloading in Finland. New product groups have nevertheless been transported through Finland (textile products and tools), replacing the lost cargos. The global recession that started in autumn 2008 has influenced the volume of Russian imports and, consequently, the transit volumes of Finland, but the recession is not expected to be of long duration, and will thus only have a short-term impact on transit volumes. The Finnish infrastructure and services offered by the logistic chain should also be ready to react to the changes in imported product groups as well as to the change in Russian export products in the future. If the development plans of the Russian economy are realized, export products will be more refined, and the share of energy and raw material products will decrease. The other notable factor to be taken into consideration is the extremely fast-changing business environment in Russia. Operators in the logistic chain should be flexible enough to adapt to all kinds of changes to capitalise on business opportunities offered by the Russian foreign trade for the companies and for the transit volumes of Finnish ports, also in the future.
Resumo:
The deterioration of surface waters is one of the most important issues in the environmental management of the European Union. Thus, the EU Water Framework Directive 2000/60/EC (WFD) requires “good ecological and chemical status” of surface waters by 2015 allowing only a slight departure from ecological reference conditions characterized by the biological communities typical for the conditions of minimal anthropogenic impact. The WFD requires the determination of ecological reference conditions and the present ecological status of surface waters. To meet this legislative demand, sedimentary diatom assemblages were used in these studies with various methods 1) to assess natural and human activity induced environmental changes, 2) to characterize background conditions 3) to evaluate the present ecological status and 4) to predict the future of the water bodies in the light of palaeolimnological data. As the WFD refers to all surface waters, both coastal and inland sites were included. Two long and two short sediment cores from the Archipelago Sea in the northern Baltic Sea were examined for their siliceous microfossils in order to assess (1) the Holocene palaeoenvironmental history and (2) the recent eutrophication of the area. The diatom record was divided into local diatom assemblage zones (LDAZ, long cores) and diatom assemblage zones (DAZ, short cores). Locally weighted weighted averaging regression and calibration (LWWA) was applied for the quantitative reconstruction of past TN concentrations (short cores). An age model for the long cores was constructed by using independent palaeomagnetic and AMS-14C methods. The short cores were dated using radiometric (210Pb, 226Ra and 137Cs) methods. The long cores date back to the early history of the Archipelago Sea, which was freshwater – no salinity increase referable to the brackish phase of the Yoldia Sea is recognized. The nutrient status of the lacustrine phase was slightly higher in the Archipelago Sea than in the Baltic Proper. Initial brackish-water influence is observed at 8 150 ±80 cal. BP (LDAZ4), but fully brackish conditions were established at 7 700 ±80 cal. BP (LDAZ5). The diatom assemblages indicate increasing salinity, warming climate and possible eutrophic conditions during the lacustrine to brackish-water transition. The decreasing abundance of Pseudosolenia calcar-avis (Schultze) Sundström and the increasing abundance of the ice-cover indicator species Pauliella taeniata (Grunow) Round and Basson indicate decreasing salinity and climatic cooling after ca. 5 000 cal. BP. Signs of eutrophication are visible in the most recent diatom assemblage zones of both short cores. Diatom-inferred total nitrogen (DI-TN) reconstructions partially fail to trace the actual measured total nitrogen concentrations especially from the late 1980s to the mid 1990s. This is most likely due to the dominating diatom species Pauliella taeniata, Thalassiosira levanderi Van Goor and Fragilariopsis cylindrus (Grunow) W. Krieger being more influenced by factors such as the length of the ice-season rather than nutrient concentrations. It is concluded that the diatom assemblages of the study sites are principally governed by climate fluctuations, with a slight influence of eutrophication visible in the most recent sediments. There are indications that global warming, with reduced ice cover, could impact the spring blooming diatom species composition in the Archipelago Sea. In addition, increased sediment accumulation in the early 90s coincides with the short ice-seasons suggesting that warming climate with decreasing ice-cover may increase sedimentation in the study area. The diverse diatom assemblages dominated by benthic species (54 %) in DAZ1 in the Käldö Fjärd core can be taken as background diatom assemblages for the Archipelago Sea. Since then turbidity has increased and the diatom assemblages have been dominated by planktonic diatoms from around the mid 1800s onwards. The reconstructed reference conditions for the total nitrogen concentrations fluctuate around 400 μg l-1. Altogether two short sediment cores and eight short cores for top-bottom analysis were retrieved from Lake Orijärvi and Lake Määrjärvi to assess the impact of the acid mine drainage (AMD) derived metals from the Orijärvi mine tailings on the diatom communities of the lakes. The Cu (Pb, Zn) mine of Orijärvi (1757 – 1956) was the first one in Finland where flotation techniques (1911 – 1955) were used to enrich ore and large quantities of tailings were produced. The AMD derived metal impact to the lakes was found to be among the heaviest thus far recorded in Finland. Concentrations of Cu, Pb and Zn in Lake Orijärvi sediments are two to three orders of magnitude higher than background values. The metal inputs have affected Lake Orijärvi and Lake Määrjärvi diatom communities at the community levels through shifts in dominant taxa (both lakes) and at the individual level through alteration in frustule morphology (Lake Orijärvi). At present, lake water still has elevated heavy metal levels, indicating that the impact from the tailings area continues to affect both lakes. Lake Orijärvi diatom assemblages are completely dominated by benthic species and are lacking planktonic diatoms. In Lake Määrjärvi the proportion of benthic and tychoplanktonic diatoms has increased and the planktonic taxa have decreased in abundance. Achnanthidium minutissimum Kützing and Brachysira vitrea (Grun.) R. Ross in Hartley were the most tolerant species to increased metal concentrations. Planktonic diatoms are more sensitive to metal contamination than benthic taxa, especially species in the genus Cyclotella (Kützing) Brébisson. The ecological reference conditions assessed in this study for Lake Orijärvi and Lake Määrjärvi comprise diverse planktonic and benthic communitites typical of circumneutral oligotrophic lakes, where the planktonic diatoms belonging to genera Cyclotella , Aulacoseira Thwaites, Tabellaria Ehrenberg and Asterionella Hassall dominate in relative abundances up to ca. 70%. The benthic communities are more diverse than the planktonic consisting of diatoms belonging to the genera Achnanthes Bory, Fragilaria Lyngbye and Navicula St. Vincent. This study clearly demonstrates that palaeolimnological methods, especially diatom analysis, provide a powerful tool for the EU Water Frame Work Directive for defining reference conditions, natural variability and current status of surface waters. The top/bottom approach is a very useful tool in larger-scale studies needed for management purposes. This “before and after” type of sediment sampling method can provide a very time and cost effective assessment of ecological reference conditions of surface waters.