4 resultados para Disease evaluation
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Atherosclerosis is a vascular inflammatory disease causing coronary artery disease, myocardial infarct and stroke, the leading causes of death in Finland and in many other countries. The development of atherosclerotic plaques starts already in childhood and is an ongoing process throughout life. Rupture of a plaque and the following occlusion of the vessel is the main reason for myocardial infarct and stroke, but despite extensive research, the prediction of rupture remains a major clinical problem. Inflammation is considered a key factor in the vulnerability of plaques to rupture. Measuring the inflammation in plaques non-invasively is one potential approach for identification of vulnerable plaques. The aim of this study was to evaluate tracers for positron emission tomography (PET) imaging of vascular inflammation. The studies were performed with a mouse model of atherosclerosis by using ex vivo biodistribution, autoradiography and in vivo PET and computed tomography (CT). Several tracers for inflammation activity were tested and compared with the morphology of the plaques. Inflammation in the atherosclerotic plaques was evaluated as expression of active macrophages. Systematic analysis revealed that the uptake of 18F-FDG and 11C-choline, tracers for metabolic activity in inflammatory cells, was more prominent in the atherosclerotic plaques than in the surrounding healthy vessel wall. The tracer for αvβ3 integrin, 18Fgalacto- RGD, was also found to have high potential for imaging inflammation in the plaques. While 11C-PK11195, a tracer targeted to receptors in active macrophages, was shown to accumulate in active plaques, the target-to-background ratio was not found to be ideal for in vivo imaging purposes. In conclusion, tracers for the imaging of inflammation in atherosclerotic plaques can be tested in experimental pre-clinical settings to select potential imaging agents for further clinical testing. 18F-FDG, 18F-galacto-RGD and 11C-choline choline have good properties, and further studies to clarify their applicability for atherosclerosis imaging in humans are warranted.
Resumo:
Dysfunction of the dopaminergic system in brain is involved in several pathological conditions such as Parkinson’s disease and depression. 2β-Carbomethoxy-3β-(4-[18F] fluorophenyl)tropane ([18F]CFT) and 6-[18F]fluoro-L-dopa ([18F]FDOPA) are tracers for imaging the dopaminergic function with positron emission tomography (PET). Peripheral uptake of [18F]FDOPA is also used in the localization and diagnosis of neuroendocrine tumors. [18F]FDOPA and [18F]CFT can be synthesized by electrophilic fluorodestannylation. However, the specific radioactivity (SA) in the electrophilic fluorination is low with traditional synthetic methods. In this study, [18F]FDOPA and [18F]CFT were synthesized using post-target-produced [18F]F2 as an electrophilic fluorination agent. With this method, tracers are produced with sufficient SA for neuroreceptor studies. Specific aims in this study were to replace Freon-11 in the production of [18F]FDOPA due to the ozone depleting properties of this solvent, to determine pharmacological specificity and selectivity of [18F]CFT with respect to monoamine transporters, and to compare the ability of these tracers to reflect the degree of nigral neuronal loss in rats in which the dopaminergic system in the brain had been unilaterally destroyed by 6- OHDA. Post-target-produced [18F]F2 was successfully used in the production of [18F]FDOPA and [18F]CFT. The SA achieved was substantially higher than in previous synthetic methods. Deuterated compounds, CD2Cl2, CDCl3 and C3D6O, were found to be suitable solvents for replacing Freon-11. Both [18F]FDOPA and [18F]CFT demonstrated nigrostriatal dopaminergic hypofunction and correlated with the number of nigral dopaminergic neurons in the 6-OHDA lesioned rat. However, the dopamine transporter (DAT) tracer [18F]CFT was more sensitive than the dopamine synthesis tracer [18F]FDOPA in detecting these defects because of the higher non-specific uptake of [18F]FDOPA. [18F]CFT can also be used for imaging the norepinephrine transporter (NET) because of the specific uptake into the locus coeruleus. The observation that [18F]CFT exhibits specific uptake in the pancreas warrants further studies in humans with respect to potential utility in pancreatic imaging
Resumo:
Mitochondria are present in all eukaryotic cells. They enable these cells utilize oxygen in the production of adenosine triphosphate in the oxidative phosphorylation system, the mitochondrial respiratory chain. The concept ‘mitochondrial disease’ conventionally refers to disorders of the respiratory chain that lead to oxidative phosphorylation defect. Mitochondrial disease in humans can present at any age, and practically in any organ system. Mitochondrial disease can be inherited in maternal, autosomal dominant, autosomal recessive, or X-chromosomal fashion. One of the most common molecular etiologies of mitochondrial disease in population is the m.3243A>G mutation in the MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). Clinical evaluation of patients with m.3243A>G has revealed various typical clinical features, such as stroke-like episodes, diabetes mellitus and sensorineural hearing loss. The prevalence and clinical characteristics of mitochondrial disease in population are not well known. This thesis consists of a series of studies, in which the prevalence and characteristics of mitochondrial disease in the adult population of Southwestern Finland were assessed. Mitochondrial haplogroup Uk was associated with increased risk of occipital ischemic stroke among young women. Large-scale mitochondrial DNA deletions and mutations of the POLG1 gene were the most common molecular etiologies of progressive external ophthalmoplegia. Around 1% of diabetes mellitus emerging between the ages 18 – 45 years was associated with the m.3243A>G mutation. Moreover, among these young diabetic patients, mitochondrial haplogroup U was associated with maternal family history of diabetes. These studies demonstrate the usefulness of carefully planned molecular epidemiological investigations in the study of mitochondrial disorders.
Resumo:
Atherosclerosis is a life-long vascular inflammatory disease and the leading cause of death in Finland and in other western societies. The development of atherosclerotic plaques is progressive and they form when lipids begin to accumulate in the vessel wall. This accumulation triggers the migration of inflammatory cells that is a hallmark of vascular inflammation. Often, this plaque will become unstable and form vulnerable plaque which may rupture causing thrombosis and in the worst case, causing myocardial infarction or stroke. Identification of these vulnerable plaques before they rupture could save lives. At present, in the clinic, there exists no appropriated, non-invasive method for their identification. The aim of this thesis was to evaluate novel positron emission tomography (PET) probes for the detection of vulnerable atherosclerotic plaques and to characterize, two mouse models of atherosclerosis. These studies were performed by using ex vivo and in vivo imaging modalities. The vulnerability of atherosclerotic plaques was evaluated as expression of active inflammatory cells, namely macrophages. Age and the duration of high-fat diet had a drastic impact on the development of atherosclerotic plaques in mice. In imaging of atherosclerosis, 6-month-old mice, kept on high-fat diet for 4 months, showed matured, metabolically active, atherosclerotic plaques. [18F]FDG and 68Ga were accumulated in the areas representative of vulnerable plaques. However, the slow clearance of 68Ga limits its use for the plaque imaging. The novel synthesized [68Ga]DOTA-RGD and [18F]EF5 tracers demonstrated efficient uptake in plaques as compared to the healthy vessel wall, but the pharmacokinetic properties of these tracers were not optimal in used models. In conclusion, these studies resulted in the identification of new strategies for the assessment of plaque stability and mouse models of atherosclerosis which could be used for plaque imaging. In the used probe panel, [18F]FDG was the best tracer for plaque imaging. However, further studies are warranted to clarify the applicability of [18F]EF5 and [68Ga]DOTA-RGD for imaging of atherosclerosis with other experimental models.