2 resultados para Digestibility, digestive enzyme activity, specific enzyme activity

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human body eliminates foreign compounds primarily by metabolizing them to hydrophilic forms to facilitate effective excretion through the kidneys. Cytochrome P450 (CYP) enzymes in the liver and intestine contribute to the metabolism of many drugs. Pharmacokinetic drugdrug interactions occur if the activity of CYPs are inhibited or induced by another drug. Prescribing multiple drugs to the improve effectiveness of therapy or to treat coexisting diseases is a common practice in clinical medicine. Polypharmacy predisposes patients to adverse effects because of the profound unpredictability in CYP enzymatic-mediated drug metabolism. S-ketamine is a phencyclidine derivative which functions as an antagonist of the N-methyl-Daspartate (NMDA) receptor in the central nervous system. It is a unique anaesthetic producing “dissociative anaesthesia” in high doses and analgesia in low doses. Studies with human liver microsomes suggest that ketamine is metabolized primarily via CYP3A4 and CYP2B6 enzymes. In this thesis, in healthy volunteers, randomized and controlled cross-over studies were conducted to investigate the effects of different CYP inducers and inhibitors on the pharmacokinetics and pharmacodynamics of oral and intravenous S-ketamine. The plasma concentrations of ketamine and its metabolite, norketamine, were determined at different timepoints over a 24 hour period. Other pharmacodynamic variables were examined for 12 hours. Results of these studies showed that the inhibition of the CYP3A4 pathway by clarithromycin or grapefruit juice increased the exposure to oral S-ketamine by 2.6- and 3.0-fold. Unexpectedly, CYP3A4 inhibition by itraconazole caused no significant alterations in the plasma concentrations of oral S-ketamine. CYP3A4 induction by St. John´s wort or rifampicin decreased profoundly the concentrations of oral S-ketamine. However, after rifampicin, there were no significant differences in the plasma concentrations of S-ketamine when it was administered intravenously. This demonstrated that rifampicin inhibited the metabolism of Sketamine at the intestinal level. When CYP2B6 was inhibited by ticlopidine, there was a 2.4- fold increase in the exposure of S-ketamine. These studies demonstrated that low dose oral Sketamine is metabolized both via CYP3A4 and CYP2B6 pathways. The concomitant use of drugs that affect CYP3A4 or CYP2B6, during oral S-ketamine treatment, may cause clinically significant drug-drug interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

I studied the associations between migration-related physiological regulation (corticosterone) and body condition of barn swallows (Hirundo rustica L.). An additional purpose was to determine whether oxidative stress and biotransformation activity vary seasonally. Since physiological regulation, biotransformation activity and the stress involved may be important factors for body condition during migration; they may have direct effects on migration success. This in turn may influence other important life history stages, such as breeding and moult. In the thesis I used barn swallow data of the Finnish Ringing Centre (1997–2009), consisting of all juveniles ringed in the nests and recaptured from night roosts later the same autumn. Before the autumn migration in Finland I also captured, ringed and sampled barn swallows from night roosts in 2003, 2006, 2007 and 2011. Samples preceding spring migration in South Africa were collected in 2007. Juvenile barn swallows started to migrate southward in mid-August (first broods). Second broods started their migration at a younger age and almost a month later than first broods (mid-September). Barn swallows increased body mass and accumulated fat for the autumn migration. In the course of the autumn they seemed to be able to prevent the loss of energy already accumulated, since the proportional overnight mass loss, fat loss and faecal production decreased. Surprisingly, corticosterone, the major energy-regulating hormone in birds, seemed not to be involved in the fuelling process. Previous studies with warblers, sparrows and shorebirds had shown that during migration, the baseline levels of corticosterone were elevated in order to facilitate fuelling. It is possible that for Finnish barn swallows the most important fuelling place is in southern Europe, since northern and eastern populations migrate via the Balkan Peninsula. However, the adrenocortical stress response of Finnish barn swallows in good body condition was lower than that of those in poor body condition. Birds clearly suppressed the response, probably to prevent the catabolic effects of excessive corticosterone levels; birds cannot afford to lose muscle mass before migration. South African barn swallows had high levels of baseline corticosterone, but this may have been associated with the high oxidative damage and biotransformation activity of those birds. Barn swallows in spring and summer had low biotransformation activity and intermediate oxidative stress, which was probably related to breeding. Autumn birds had low biotransformation activity and oxidative stress but high redox enzyme activities in some migration-related enzymes.