6 resultados para Diffusion Models
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tutkielman tavoitteena oli tarkastella innovaatioiden leviämismallien ennustetarkkuuteen vaikuttavia tekijöitä. Tutkielmassa ennustettiin logistisella mallilla matkapuhelinliittymien leviämistä kolmessa Euroopan maassa: Suomessa, Ranskassa ja Kreikassa. Teoriaosa keskittyi innovaatioiden leviämisen ennustamiseen leviämismallien avulla. Erityisesti painotettiin mallien ennustuskykyä ja niiden käytettävyyttä eri tilanteissa. Empiirisessä osassa keskityttiin ennustamiseen logistisella leviämismallilla, joka kalibroitiin eri tavoin koostetuilla aikasarjoilla. Näin tehtyjä ennusteita tarkasteltiin tiedon kokoamistasojen vaikutusten selvittämiseksi. Tutkimusasetelma oli empiirinen, mikä sisälsi logistisen leviämismallin ennustetarkkuuden tutkimista otosdatan kokoamistasoa muunnellen. Leviämismalliin syötettävä data voidaan kerätä kuukausittain ja operaattorikohtaisesti vaikuttamatta ennustetarkkuuteen. Dataan on sisällytettävä leviämiskäyrän käännöskohta, eli pitkän aikavälin huippukysyntäpiste.
Resumo:
Tämän tutkimuksen päätavoitteena oli selvittää, millaiset liiketoimintamallit soveltuvat mobiilin internet-liiketoiminnan harjoittamiseen kehittyvillä markkinoilla. Tavoitteena oli myös selvittää tekijöitä, jotka vaikuttavat mobiilin internetin diffuusioon. Tutkimus tehtiin käyttäen sekä kvantitatiivista että kvalitatiivista tutkimusmenetelmää. Klusterianalyysin avulla 40 Euroopan maasta muodostettiin sisäisesti homogeenisiä maaklustereita. Näiden klustereiden avulla oli mahdollista suunnitella erityyppisille markkinoille soveltuvat liiketoimintamallit. Haastatteluissa selvitettiin asiantuntijoiden näkemyksiä tekijöistä, jotka vaikuttavat mobiilin internetin diffuusioon kehittyvillä markkinoilla. Tutkimuksessa saatiin selville, että tärkeimmät liiketoimintamallin elementit kehittyvillä markkinoilla ovat hinnoittelu, arvotarjooma ja arvoverkko. Puutteellisen kiinteän verkon todettiin olevan yksi tärkeimmistä mobiilin internetin diffuusiota edistävistä tekijöistä kehittyvillä markkinoilla.
Resumo:
A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.
Resumo:
The diffusion of mobile telephony began in 1971 in Finland, when the first car phones, called ARP1 were taken to use. Technologies changed from ARP to NMT and later to GSM. The main application of the technology, however, was voice transfer. The birth of the Internet created an open public data network and easy access to other types of computer-based services over networks. Telephones had been used as modems, but the development of the cellular technologies enabled automatic access from mobile phones to Internet. Also other wireless technologies, for instance Wireless LANs, were also introduced. Telephony had developed from analog to digital in fixed networks and allowed easy integration of fixed and mobile networks. This development opened a completely new functionality to computers and mobile phones. It also initiated the merger of the information technology (IT) and telecommunication (TC) industries. Despite the arising opportunity for firms' new competition the applications based on the new functionality were rare. Furthermore, technology development combined with innovation can be disruptive to industries. This research focuses on the new technology's impact on competition in the ICT industry through understanding the strategic needs and alternative futures of the industry's customers. The change speed inthe ICT industry is high and therefore it was valuable to integrate the DynamicCapability view of the firm in this research. Dynamic capabilities are an application of the Resource-Based View (RBV) of the firm. As is stated in the literature, strategic positioning complements RBV. This theoretical framework leads theresearch to focus on three areas: customer strategic innovation and business model development, external future analysis, and process development combining these two. The theoretical contribution of the research is in the development of methodology integrating theories of the RBV, dynamic capabilities and strategic positioning. The research approach has been constructive due to the actual managerial problems initiating the study. The requirement for iterative and innovative progress in the research supported the chosen research approach. The study applies known methods in product development, for instance, innovation process in theGroup Decision Support Systems (GDSS) laboratory and Quality Function Deployment (QFD), and combines them with known strategy analysis tools like industry analysis and scenario method. As the main result, the thesis presents the strategic innovation process, where new business concepts are used to describe the alternative resource configurations and scenarios as alternative competitive environments, which can be a new way for firms to achieve competitive advantage in high-velocity markets. In addition to the strategic innovation process as a result, thestudy has also resulted in approximately 250 new innovations for the participating firms, reduced technology uncertainty and helped strategic infrastructural decisions in the firms, and produced a knowledge-bank including data from 43 ICT and 19 paper industry firms between the years 1999 - 2004. The methods presentedin this research are also applicable to other industries.
Resumo:
Työn päätavoitteena oli selvittää hinnan ja kilpailutilanteen vaikutusta matkaviestinnän diffuusioon. Työn empiirinen osuus tarkasteli matkapuhelinliittymien hinnan vaikutusta liittymien diffuusioon sekä sitä, miten alan kilpailu on vaikuttanut matkaviestinnän hintatasoon. Työssä analysoitiin myös matkaviestinnän kilpailutilannetta Suomen markkinoilla. Tutkimuksen empiirinen aineisto kerättiin toissijaisista lähteistä, esimerkiksi EMC-tietokannasta. Tutkimus oli luonteeltaan kvantitatiivinen.Empiirisessä osassa käytetyt mallit oli muodostettu aikaisempien tutkimuksien perusteella. Regressioanalyysiä käytettiin arvioitaessa hinnan vaikutusta diffuusionopeuteen ja mahdollisten omaksujien määrään. Regressioanalyysissä sovellettiin ei-lineaarista mallia.Tutkimustulokset osoittivat, että tasaisesti laskevilla matkapuhelinliittymien sekä matkapuhelimien hinnoilla ei ole merkittävää vaikutusta matkaviestinnän diffuusioon. Myöskään kilpailutilanne ei ole vaikuttanut paljon matkaviestinnän yleiseen hintatasoon. Työn tulosten perusteella voitiin antaa myös muutamia toimenpide-ehdotuksia jatkotutkimuksia varten.
Resumo:
This thesis concerns the analysis of epidemic models. We adopt the Bayesian paradigm and develop suitable Markov Chain Monte Carlo (MCMC) algorithms. This is done by considering an Ebola outbreak in the Democratic Republic of Congo, former Zaïre, 1995 as a case of SEIR epidemic models. We model the Ebola epidemic deterministically using ODEs and stochastically through SDEs to take into account a possible bias in each compartment. Since the model has unknown parameters, we use different methods to estimate them such as least squares, maximum likelihood and MCMC. The motivation behind choosing MCMC over other existing methods in this thesis is that it has the ability to tackle complicated nonlinear problems with large number of parameters. First, in a deterministic Ebola model, we compute the likelihood function by sum of square of residuals method and estimate parameters using the LSQ and MCMC methods. We sample parameters and then use them to calculate the basic reproduction number and to study the disease-free equilibrium. From the sampled chain from the posterior, we test the convergence diagnostic and confirm the viability of the model. The results show that the Ebola model fits the observed onset data with high precision, and all the unknown model parameters are well identified. Second, we convert the ODE model into a SDE Ebola model. We compute the likelihood function using extended Kalman filter (EKF) and estimate parameters again. The motivation of using the SDE formulation here is to consider the impact of modelling errors. Moreover, the EKF approach allows us to formulate a filtered likelihood for the parameters of such a stochastic model. We use the MCMC procedure to attain the posterior distributions of the parameters of the SDE Ebola model drift and diffusion parts. In this thesis, we analyse two cases: (1) the model error covariance matrix of the dynamic noise is close to zero , i.e. only small stochasticity added into the model. The results are then similar to the ones got from deterministic Ebola model, even if methods of computing the likelihood function are different (2) the model error covariance matrix is different from zero, i.e. a considerable stochasticity is introduced into the Ebola model. This accounts for the situation where we would know that the model is not exact. As a results, we obtain parameter posteriors with larger variances. Consequently, the model predictions then show larger uncertainties, in accordance with the assumption of an incomplete model.