4 resultados para Diel modulation, Hsp60 and Hsp70, Acropora tenuis, Echinopora lamellosa, Porites lobata
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Multilevel converters provide an attractive solution to bring the benefits of speed-controlled rotational movement to high-power applications. Therefore, multilevel inverters have attracted wide interest in both the academic community and in the industry for the past two decades. In this doctoral thesis, modulation methods suitable especially for series connected H-bridge multilevel inverters are discussed. A concept of duty cycle modulation is presented and its modification is proposed. These methods are compared with other well-known modulation schemes, such as space-vector pulse width modulation and carrier-based modulation schemes. The advantage of the modified duty-cycle modulation is its algorithmic simplicity. A similar mathematical formulation for the original duty cycle modulation is proposed. The modified duty cycle modulation is shown to produce well-formed phase-to-neutral voltages that have lower total harmonic distortion than the space-vector pulse width modulation and the duty cycle modulation. The space-vector-based solution and the duty cycle modulation, on the other hand, result in a better-quality line-to-line voltage and current waveform. The voltage of the DC links in the modules of the series-connected H-bridge inverter are shown to fluctuate while they are under load. The fluctuation causes inaccuracies in the voltage production, which may result in a failure of the flux estimator in the controller. An extension for upper-level modulation schemes, which changes the switching instants of the inverter so that the output voltage meets the reference voltage accurately regardless of the DC link voltages, is proposed. The method is shown to reduce the error to a very low level when a sufficient switching frequency is used. An appropriate way to organize the switching instants of the multilevel inverter is to make only one-level steps at a time. This causes restrictions on the dynamical features of the modulation schemes. The produced voltage vector cannot be rotated several tens of degrees in a single switching period without violating the above-mentioned one-level-step rule. The dynamical capabilities of multilevel inverters are analyzed in this doctoral thesis, and it is shown that the multilevel inverters are capable of operating even in dynamically demanding metal industry applications. In addition to the discussion on modulation schemes, an overvoltage in multilevel converter drives caused by cable reflection is addressed. The voltage reflection phenomenon in drives with long feeder cables causes premature insulation deterioration and also affects the commonmode voltage, which is one of the main reasons for bearing currents. Bearing currents, on the other hand, cause fluting in the bearings, which results in premature bearing failure. The reflection phenomenon is traditionally prevented by filtering, but in this thesis, a modulationbased filterless method to mitigate the overvoltage in multilevel drives is proposed. Moreover, the mitigation method can be implemented as an extension for upper-level modulation schemes. The method exploits the oscillations caused by two consecutive voltage edges so that the sum of the oscillations results in a mitigated peak of the overvoltage. The applicability of the method is verified by simulations together with experiments with a full-scale prototype.
Resumo:
The aim of this study was to investigate herpes simplex virus type 1 (HSV-1)- and measles virus (MV)-induced cell death. HSV-1 with deletion in genes encoding infected cell protein (ICP)4 and protein kinase Us3 (d120) induced apoptosis and cathepsin activation in epithelial (HEp-2) and monocytic (U937) cells. Inhibition of cathepsin activity decreased the amount of d120-induced apoptosis indicating that d120-induced apoptosis could be cathepsin-mediated. Also, HSV-1 infection increased caspase activation suggesting that d120-induced apoptosis is probably caspase-mediated. Cystatin treatment decreased the activity of cathepsins and the replication of HSV-1 indicating that cathepsins contribute to HSV-1 infection. Interestingly, d120 induced also necroptosis in monocytic cells. This is the first report on necroptosis in HSV-1- infected cells. MV induced apoptosis in uninfected bystander T lymphocytes, probably via interaction of MV-infected monocytes with uninfected lymphocytes. The expression of death receptor Fas was clearly increased on the surface of lymphocytes. The number of apoptotic cells and the activation of cathepsins and caspases were increased in MVinfected U937 cells suggesting that MV-induced apoptosis could be cathepsin- and caspase-mediated. Cystatin treatment inhibited cathepsin activities but not MV-induced apoptosis. Besides HSV-1-induced apoptosis, innate immune responses were studied in HSV-1-infection. HSV-1 viruses with either ICP4 and Us3, or Us3 deletion only, increased the expression of Toll-like receptor (TLR)3 and stimulated its downstream pathways leading to increased expression of type I interferon gene and to functional interferons. These findings suggest that besides controlling apoptosis, HSV-1 ICP4 and Us3 genes are involved in the control of TLR3 response in infected cell.
Resumo:
Humans are profoundly changing aquatic environments through climate change and the release of nutrients and chemicals. To understand the effects of these changes on natural populations, knowledge on individuals’ environmental responses is needed. At the molecular level, the environmental responses are partly mediated by chances in messenger RNA and protein levels. In this thesis I study messenger RNA and protein responses to an assortment of environmental stressors in fish. As daily (diel) rhythms are known to be ubiquitous in different tissues, I particularly focus on diel patterns in the responses. The studied species are the three-spined stickleback (Gasterosteus aculeatus L.) and the Arctic char (Salvelinus alpinus L.), both of which have circumpolar distribution in the Northern hemisphere. In the first two studies, three-spined sticklebacks were exposed to both the non-steroidal anti-inflammatory drug diclofenac and low-oxygen conditions (hypoxia), and their responses measured at separate time points in the liver and gills. The results show how the seemingly unrelated environmental stressors, hypoxia and anti-inflammatory drugs, can have harmful combined effects that differ from the effects of each stressor alone. Moreover, both stressors disturbed natural diel patterns in gene expression. In the third study, I studied the responses of three-spined sticklebacks to two test chemicals: one used in hormonal medicine (17α-ethinyl-oestradiol) and one used as a plasticizer and solvent chemical (di-n-butyl phthalate). The results suggest that the phthalate can affect genes related to spermatogenesis in fish testes, while estrogen-mimicking compounds can lead to numerous disturbances in the endocrine system. In the final study, the temperature-dependence of diel rhythms in messenger RNA levels were evaluated in the liver tissue of the Arctic char, a cold-adapted salmonid. The results show that cold acclimation repressed diel rhythms in gene expression compared to warm-acclimated fish, in which the expression of hundreds of genes was rhythmic, suggesting the circadian clock of the Arctic fish species can be sensitive to temperature. Overall, the results of the thesis indicate that fishes’ responses to abiotic factors interact with their diel rhythms, and more studies on the consequences of these interactions are needed to comprehensively understand human impacts on ecosystems.