10 resultados para Dextransucrase assays

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles offer adjustable and expandable reactive surface area compared to the more traditional solid phase forms utilized in bioaffinity assays due to the high surface to-volume ratio. The versatility of nanoparticles is further improved by the ability to incorporate various molecular complexes such as luminophores into the core. Nanoparticle labels composed of polystyrene, silica, inorganic crystals doped with high number of luminophores, preferably lanthanide(III) complexes, are employed in bioaffinity assays. Other label species such as semiconductor crystals (quantum dots) or colloidal gold clusters are also utilized. The surface derivatization of such particles with biomolecules is crucial for the applicability to bioaffinity assays. The effectiveness of a coating is reliant on the biomolecule and particle surface characteristics and the selected coupling technique. The most critical aspects of the particle labels in bioaffinity assays are their size-dependent features. For polystyrene, silica and inorganic phosphor particles, these include the kinetics, specific activity and colloidal stability. For quantum dots and gold colloids, the spectral properties are also dependent on particle size. This study reports the utilization of europium(III)-chelate-embedded nanoparticle labels in the development of bioaffinity assays. The experimental covers both the heterogeneous and homogeneous assay formats elucidating the wide applicability of the nanoparticles. It was revealed that the employment of europium(III) nanoparticles in heterogeneous assays for viral antigens, adenovirus hexon and hepatitis B surface antigen (HBsAg), resulted in sensitivity improvement of 10-1000 fold compared to the reference methods. This improvement was attributed to the extreme specific activity and enhanced monovalent affinity of the nanoparticles conjugates. The applicability of europium(III)-chelate-doped nanoparticles to homogeneous assay formats were proved in two completely different experimental settings; assays based on immunological recognition or proteolytic activity. It was shown that in addition to small molecule acceptors, particulate acceptors may also be employed due to the high specific activity of the particles promoting proximity-induced reabsorptive energy transfer in addition to non-radiative energy transfer. The principle of proteolytic activity assay relied on a novel dual-step FRET concept, wherein the streptavidin-derivatized europium(III)-chelate-doped nanoparticles were used as donors for peptide substrates modified with biotin and terminal europium emission compliant primary acceptor and a secondary quencher acceptor. The recorded sensitized emission was proportional to the enzyme activity, and the assay response to various inhibitor doses was in agreement with those found in literature showing the feasibility of the technique. Experiments regarding the impact of donor particle size on the extent of direct donor fluorescence and reabsorptive excitation interference in a FRET-based application was conducted with differently sized europium(III)-chelate-doped nanoparticles. It was shown that the size effect was minimal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing incidence of type 1 diabetes has led researchers on a quest to find the reason behind this phenomenon. The rate of increase is too great to be caused simply by changes in the genetic component, and many environmental factors are under investigation for their possible contribution. These studies require, however, the participation of those individuals most likely to develop the disease, and the approach chosen by many is to screen vast populations to find persons with increased genetic risk factors. The participating individuals are then followed for signs of disease development, and their exposure to suspected environmental factors is studied. The main purpose of this study was to find a suitable tool for easy and inexpensive screening of certain genetic risk markers for type 1 diabetes. The method should be applicable to using whole blood dried on sample collection cards as sample material, since the shipping and storage of samples in this format is preferred. However, the screening of vast sample libraries of extracted genomic DNA should also be possible, if such a need should arise, for example, when studying the effect of newly discovered genetic risk markers. The method developed in this study is based on homogeneous assay chemistry and an asymmetrical polymerase chain reaction (PCR). The generated singlestranded PCR product is probed by lanthanide-labelled, LNA (locked nucleic acid)-spiked, short oligonucleotides with exact complementary sequences. In the case of a perfect match, the probe is hybridised to the product. However, if even a single nucleotide difference occurs, the probe is bound instead of the PCR product to a complementary quencher-oligonucleotide labelled with a dabcyl-moiety, causing the signal of the lanthanide label to be quenched. The method was applied to the screening of the well-known type 1 diabetes risk alleles of the HLA-DQB1 gene. The method was shown to be suitable as an initial screening step including thousands of samples in the scheme used in the TEDDY (The Environmental Determinants of Diabetes in the Young) study to identify those individuals at increased genetic risk. The method was further developed into dry-reagent form to allow an even simpler approach to screening. The reagents needed in the assay were in dry format in the reaction vessel, and performing the assay required only the addition of the sample and, if necessary, water to rehydrate the reagents. This allows the assay to be successfully executed even by a person with minimal laboratory experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac troponins (cTns) are the recommended biochemical markers in the diagnosis of myocardial infarction (MI). They are very sensitive and tissue-specific but are limited by their delayed appearance in the circulation. Biochemical markers with more rapid release kinetics, e.g. myoglobin and especially heart-type fatty acid-binding protein (H-FABP), have been used to enhance the early identification of MI. The implementation of cTns into clinical practice has shown that cardiomyocyte injury occurs in many other clinical conditions than MI. The aim of this study was to evaluate the impact of modern and highly sensitive cTnI assays on the early diagnosis of MI. In a patient cohort with suspected MI, such a sensitive cTnI assay enhanced the early diagnostic accuracy when compared to a less sensitive cTnI assay and to myoglobin. When compared to H-FABP during the early hours after symptom onset, the sensitive cTnI assay showed at least similar and, after 6 hours, superior diagnostic accuracy. A positive cTnI test result had superior prognostic value when compared to H-FABP, even among early presenters. The prognostic value of cTn in acute heart failure (AHF) was evaluated in 364 patients who participated in the FINN-AKVA study. The patients presented with AHF but no acute coronary syndrome (ACS). Up to half of the patients had elevated cTn levels which were associated with higher 6-month mortality. The magnitude of cTn elevation was directly proportional to mortality. Finally, the clinical spectrum of cTnI elevations was evaluated in 991 cTnI positive emergency department (ED) patients. 83% of the patients had MI and 17% had cTnI elevation due to other clinical conditions. The latter patient group was characterized by lower absolute cTnI levels and – importantly – higher in-hospital mortality when compared to the MI patients. In conclusion, the use of a highly sensitive cTnI assay enhances the early diagnostic accuracy and risk stratification in suspected MI patients. Cardiac troponin elevations are highly prevalent also in other acute clinical conditions and indicate an adverse outcome of these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational model-based simulation methods were developed for the modelling of bioaffinity assays. Bioaffinity-based methods are widely used to quantify a biological substance in biological research, development and in routine clinical in vitro diagnostics. Bioaffinity assays are based on the high affinity and structural specificity between the binding biomolecules. The simulation methods developed are based on the mechanistic assay model, which relies on the chemical reaction kinetics and describes the forming of a bound component as a function of time from the initial binding interaction. The simulation methods were focused on studying the behaviour and the reliability of bioaffinity assay and the possibilities the modelling methods of binding reaction kinetics provide, such as predicting assay results even before the binding reaction has reached equilibrium. For example, a rapid quantitative result from a clinical bioaffinity assay sample can be very significant, e.g. even the smallest elevation of a heart muscle marker reveals a cardiac injury. The simulation methods were used to identify critical error factors in rapid bioaffinity assays. A new kinetic calibration method was developed to calibrate a measurement system by kinetic measurement data utilizing only one standard concentration. A nodebased method was developed to model multi-component binding reactions, which have been a challenge to traditional numerical methods. The node-method was also used to model protein adsorption as an example of nonspecific binding of biomolecules. These methods have been compared with the experimental data from practice and can be utilized in in vitro diagnostics, drug discovery and in medical imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria can exist as planktonic, the lifestyle in which single cells exist in suspension, and as biofilms, which are surface-attached bacterial communities embedded in a selfproduced matrix. Most of the antibiotics and the methods for antimicrobial work have been developed for planktonic bacteria. However, the majority of the bacteria in natural habitats live as biofilms. Biofilms develop dauntingly fast high resistance towards conventional antibacterial treatments and thus, there is a great need to meet the demands of effective anti-biofilm therapy. In this thesis project it was attempted to fill the void of anti-biofilm screening methods by developing a platform of assays that evaluate the effect that screened compounds have on the total biomass, viability and the extracellular polysaccharide (EPS) layer of the biofilms. Additionally, a new method for studying biofilms and their interactions with compounds in a continuous flow system was developed using capillary electrochromatography (CEC). The screening platform was utilized with a screening campaign using a small library of cinchona alkaloids. The assays were optimized to be statistically robust enough for screening. The first assay, based on crystal violet staining, measures total biofilm biomass, and it was automated using a liquid handling workstation to decrease the manual workload and signal variation. The second assay, based on resazurin staining, measures viability of the biofilm, and it was thoroughly optimized for the strain used, but was then a very simple and fast method to be used for primary screening. The fluorescent resazurin probe is not toxic to the biofilms. In fact, it was also shown in this project that staining the biofilms with resazurin prior to staining with crystal violet had no effect on the latter and they can be used in sequence on the same screening plate. This sequential addition step was indeed a major improvement on the use of reagents and consumables and also shortened the work time. As a third assay in the platform a wheat germ agglutinin based assay was added to evaluate the effect a compound has on the EPS layer. Using this assay it was found that even if compounds might have clear effect on both biomass and viability, the EPS layer can be left untouched or even be increased. This is a clear implication of the importance of using several assays to be able to find “true hits” in a screening setting. In the pilot study of screening for antimicrobial and anti-biofilm effects using a cinchona alkaloid library, one compound was found to have antimicrobial effect against planktonic bacteria and prevent biofilm formation at low micromolar concentration. To eradicate biofilms, a higher concentration was needed. It was also shown that the chemical space occupied by the active compound was slightly different than the rest of the cinchona alkaloids as well as the rest of the compounds used for validatory screening during the optimization processes of the separate assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional diagnostics tests and technologies typically allow only a single analysis and result per test. The aim of this study was to propose robust and multiplex array-inwell test platforms based on oligonucleotide and protein arrays combining the advantages of simple instrumentation and upconverting phosphor (UCP) reporter technology. The UCPs are luminescent lanthanide-doped crystals that have a unique capability to convert infrared radiation into visible light. No autofluorescence is produced from the sample under infrared excitation enabling the development of highly sensitive assays. In this study, an oligonucleotide array-in-well hybridization assay was developed for the detection and genotyping of human adenoviruses. The study provided a verification of the advantages and potential of the UCP-based reporter technology in multiplex assays as well as anti-Stokes photoluminescence detection with a new anti- Stokes photoluminescence imager. The developed assay was technically improved and used to detect and genotype adenovirus types from clinical specimens. Based on the results of the epidemiological study, an outbreak of adenovirus type B03 was observed in the autumn of 2010. A quantitative array-in-well immunoassay was developed for three target analytes (prostate specific antigen, thyroid stimulating hormone, and luteinizing hormone). In this study, quantitative results were obtained for each analyte and the analytical sensitivities in buffer were in clinically relevant range. Another protein-based array-inwell assay was developed for multiplex serodiagnostics. The developed assay was able to detect parvovirus B19 IgG and adenovirus IgG antibodies simultaneously from serum samples according to reference assays. The study demonstrated that the UCPtechnology is a robust detection method for diverse multiplex imaging-based array-inwell assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measuring protein biomarkers from sample matrix, such as plasma, is one of the basic tasks in clinical diagnostics. Bioanalytical assays used for the measuring should be able to measure proteins with high sensitivity and specificity. Furthermore, multiplexing capability would also be advantageous. To ensure the utility of the diagnostic test in point-of-care setting, additional requirements such as short turn-around times, ease-ofuse and low costs need to be met. On the other hand, enhancement of assay sensitivity could enable exploiting novel biomarkers, which are present in very low concentrations and which the current immunoassays are unable to measure. Furthermore, highly sensitive assays could enable the use of minimally invasive sampling. In the development of high-sensitivity assays the label technology and affinity binders are in pivotal role. Additionally, innovative assay designs contribute to the obtained sensitivity and other characteristics of the assay as well as its applicability. The aim of this thesis was to study the impact of assay components on the performance of both homogeneous and heterogeneous assays. Applicability of two different lanthanide-based label technologies, upconverting nanoparticles and switchable lanthanide luminescence, to protein detection was explored. Moreover, the potential of recombinant antibodies and aptamers as alternative affinity binders were evaluated. Additionally, alternative conjugation chemistries for production of the labeled binders were studied. Different assay concepts were also evaluated with respect to their applicability to point-of-care testing, which requires simple yet sensitive methods. The applicability of upconverting nanoparticles to the simultaneous quantitative measurement of multiple analytes using imaging-based detection was demonstrated. Additionally, the required instrumentation was relatively simple and inexpensive compared to other luminescent lanthanide-based labels requiring time-resolved measurement. The developed homogeneous assays exploiting switchable lanthanide luminescence were rapid and simple to perform and thus applicable even to point-ofcare testing. The sensitivities of the homogeneous assays were in the picomolar range, which are still inadequate for some analytes, such as cardiac troponins, requiring ultralow limits of detection. For most analytes, however, the obtained limits of detection were sufficient. The use of recombinant antibody fragments and aptamers as binders allowed site-specific and controlled covalent conjugation to construct labeled binders reproducibly either by using chemical modification or recombinant technology. Luminescent lanthanide labels were shown to be widely applicable for protein detection in various assay setups and to contribute assay sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac troponins (cTn) I and T are the current golden standard biochemical markers in the diagnosis and risk stratification of patients with suspected acute coronary syndrome. During the past few years, novel assays capable of detecting cTn‐concentrations in >50% of apparently healthy individuals have become readily available. With the emerging of these high sensitivity cTn assays, reductions in the assay specificity have caused elevations in the measured cTn levels that do not correlate with the clinical picture of the patient. The increased assay sensitivity may reveal that various analytical interference mechanisms exist. This doctoral thesis focused on developing nanoparticle‐assisted immunometric assays that could possibly be applied to an automated point‐of‐care system. The main objective was to develop minimally interference‐prone assays for cTnI by employing recombinant antibody fragments. Fast 5‐ and 15‐minute assays for cTnI and D‐dimer, a degradation product of fibrin, based on intrinsically fluorescent nanoparticles were introduced, thus highlighting the versatility of nanoparticles as universally applicable labels. The utilization of antibody fragments in different versions of the developed cTnI‐assay enabled decreases in the used antibody amounts without sacrificing assay sensitivity. In addition, the utilization of recombinant antibody fragments was shown to significantly decrease the measured cTnI concentrations in an apparently healthy population, as well as in samples containing known amounts of potentially interfering factors: triglycerides, bilirubin, rheumatoid factors, or human anti‐mouse antibodies. When determining the specificity of four commercially available antibodies for cTnI, two out of the four cross‐reacted with skeletal troponin I, but caused crossreactivity issues in patient samples only when paired together. In conclusion, the results of this thesis emphasize the importance of careful antibody selection when developing cTnI assays. The results with different recombinant antibody fragments suggest that the utilization of antibody fragments should strongly be encouraged in the immunoassay field, especially with analytes such as cTnI that require highly sensitive assay approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the work presented in this study was to demonstrate the wide applicability of a single-label quenching resonance energy transfer (QRET) assay based on time-resolved lanthanide luminescence. QRET technology is proximity dependent method utilizing weak and unspecific interaction between soluble quencher molecule and lanthanide chelate. The interaction between quencher and chelate is lost when the ligand binds to its target molecule. The properties of QRET technology are especially useful in high throughput screening (HTS) assays. At the beginning of this study, only end-point type QRET technology was available. To enable efficient study of enzymatic reactions, the QRET technology was further developed to enable measurement of reaction kinetics. This was performed using proteindeoxyribonuclei acid (DNA) interaction as a first tool to monitor reaction kinetics. Later, the QRET was used to study nucleotide exchange reaction kinetics and mutation induced effects to the small GTPase activity. Small GTPases act as a molecular switch shifting between active GTP bound and inactive GDP bound conformation. The possibility of monitoring reaction kinetics using the QRET technology was evaluated using two homogeneous assays: a direct growth factor detection assay and a nucleotide exchange monitoring assay with small GTPases. To complete the list, a heterogeneous assay for monitoring GTP hydrolysis using small GTPases, was developed. All these small GTPase assays could be performed using nanomolar protein concentrations without GTPase pretreatment. The results from these studies demonstrated that QRET technology can be used to monitor reaction kinetics and further enable the possibility to use the same method for screening.