4 resultados para Descarga sólida fluvial

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD study aims to exploit the rich archive provided by the Miocene mollusc fauna of the Pebas Formation and other inland Miocene Amazonian formations to reconstruct landscape evolution and biotic development in lowland Amazonia during the Neogene. Over 160 samples from more than 70 Pebas Formation outcrops mostly collected by the author were processed for this study. Additional samples were collected in Andean areas of Colombia and Venezuela and further material from other northwestern South American basins was studied in museums. Pebas Formation samples and well log data made available by Occidental Peru from three wells in the Marañon Basin in Peru were also investigated. During this study four genera and 74 species from the Pebas Formation have been described and a further 13 species have been introduced in open nomenclature, and several species were reported for the first time. The number of mollusc species attributed to the Pebas fauna has increased from around 50 to 156. The Pebas fauna is characterised as aquatic, endemic and extinct, and is a typical representative of a long-lived lake fauna. Fluvial taxa are not common, (marginal) marine taxa are rare. An additional molluscan fauna from the Miocene Solimões Formation of Brazil, containing 13 fresh water species was also described. The newly documented fauna was used to improve biostratigraphic framework of Miocene Amazonian deposits. Twelve mollusc zones were introduced, the upper eleven of which cover a time interval of approximately seven million years covered previously by only three pollen zones. An age model calculated for the borehole data indicates that the Pebas Formation was deposited between c. 24 and 11 Ma. The areal distribution of the outcropping mollusc zones uncovered a broad dome structure, termed here the Iquitos-Araracuara anteclise in the study area. The structure appears to have influenced river courses and also contributed to edaphic heterogeneity that may have been in part responsible for the current high biodiversity in the study area. The Pebas system was a huge system (> one million km2) dominated by relatively shallow lakes, but also containing swamps and rivers. The system was fed by rivers draining the emergent Andes in the west and lowlands and cratons to the east. The Pebas system was located at sea level and was open to marine settings through a northern portal running through the Llanos Basin and East Venezuela Basin towards the Caribbean. Cyclical baselevel changes possibly related to Mylankhovitch cycles, have been documented in depositional sequences of the Pebas Formation. The composition of the Pebasian mollusc fauna implies that the system was mostly a fresh water system. Such an interpretation is matched by strontium isotope ratios as well as very negative δ18O ratios found in the shells, but is at odds with oligohaline and mesohaline ichnofacies found in the same strata. The mollusc fauna of the Pebas Formation diversified through most of the existence of the lake system. The diversification was mostly the result of in-situ cladogenesis. The success of some of the Pebasian endemic clades is explained by adaptation to fresh water, low oxygen, common unconsolidated lake bottoms (soup grounds) as well as high predation intensity. Maximum diversity was reached at the base of the late Middle to early Late Miocene Grimsdalea pollen zone, some 13 Ma. At the time some 85 species co-occurred, 67 of which are considered as Pebasian endemics. A subsequent drop in species richness coincides with indications of elevated salinities, although a causal relation still needs to be established. Apparently the Pebas fauna went (almost) entirely extinct with the replacement of the lake system into a fluvio-tidal system during the Early Late Miocene, some 11 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meandering rivers have been perceived to evolve rather similarly around the world independently of the location or size of the river. Despite the many consistent processes and characteristics they have also been noted to show complex and unique sets of fluviomorphological processes in which local factors play important role. These complex interactions of flow and morphology affect notably the development of the river. Comprehensive and fundamental field, flume and theoretically based studies of fluviomorphological processes in meandering rivers have been carried out especially during the latter part of the 20th century. However, as these studies have been carried out with traditional field measurements techniques their spatial and temporal resolution is not competitive to the level achievable today. The hypothesis of this study is that, by exploiting e increased spatial and temporal resolution of the data, achieved by combining conventional field measurements with a range of modern technologies, will provide new insights to the spatial patterns of the flow-sediment interaction in meandering streams, which have perceived to show notable variation in space and time. This thesis shows how the modern technologies can be combined to derive very high spatial and temporal resolution data on fluvio-morphological processes over meander bends. The flow structure over the bends is recorded in situ using acoustic Doppler current profiler (ADCP) and the spatial and temporal resolution of the flow data is enhanced using 2D and 3D CFD over various meander bends. The CFD are also exploited to simulate sediment transport. Multi-temporal terrestrial laser scanning (TLS), mobile laser scanning (MLS) and echo sounding data are used to measure the flow-based changes and formations over meander bends and to build the computational models. The spatial patterns of erosion and deposition over meander bends are analysed relative to the measured and modelled flow field and sediment transport. The results are compared with the classic theories of the processes in meander bends. Mainly, the results of this study follow well the existing theories and results of previous studies. However, some new insights regarding to the spatial and temporal patterns of the flow-sediment interaction in a natural sand-bed meander bend are provided. The results of this study show the advantages of the rapid and detailed measurements techniques and the achieved spatial and temporal resolution provided by CFD, unachievable with field measurements. The thesis also discusses the limitations which remain in the measurement and modelling methods and in understanding of fluvial geomorphology of meander bends. Further, the hydro- and morphodynamic models’ sensitivity to user-defined parameters is tested, and the modelling results are assessed against detailed field measurement. The study is implemented in the meandering sub-Arctic Pulmanki River in Finland. The river is unregulated and sand-bed and major morphological changes occur annually on the meander point bars, which are inundated only during the snow-melt-induced spring floods. The outcome of this study applies to sandbed meandering rivers in regions where normally one significant flood event occurs annually, such as Arctic areas with snow-melt induced spring floods, and where the point bars of the meander bends are inundated only during the flood events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful management of rivers requires an understanding of the fluvial processes that govern them. This, in turn cannot be achieved without a means of quantifying their geomorphology and hydrology and the spatio-temporal interactions between them, that is, their hydromorphology. For a long time, it has been laborious and time-consuming to measure river topography, especially in the submerged part of the channel. The measurement of the flow field has been challenging as well, and hence, such measurements have long been sparse in natural environments. Technological advancements in the field of remote sensing in the recent years have opened up new possibilities for capturing synoptic information on river environments. This thesis presents new developments in fluvial remote sensing of both topography and water flow. A set of close-range remote sensing methods is employed to eventually construct a high-resolution unified empirical hydromorphological model, that is, river channel and floodplain topography and three-dimensional areal flow field. Empirical as well as hydraulic theory-based optical remote sensing methods are tested and evaluated using normal colour aerial photographs and sonar calibration and reference measurements on a rocky-bed sub-Arctic river. The empirical optical bathymetry model is developed further by the introduction of a deep-water radiance parameter estimation algorithm that extends the field of application of the model to shallow streams. The effect of this parameter on the model is also assessed in a study of a sandy-bed sub-Arctic river using close-range high-resolution aerial photography, presenting one of the first examples of fluvial bathymetry modelling from unmanned aerial vehicles (UAV). Further close-range remote sensing methods are added to complete the topography integrating the river bed with the floodplain to create a seamless high-resolution topography. Boat- cart- and backpack-based mobile laser scanning (MLS) are used to measure the topography of the dry part of the channel at a high resolution and accuracy. Multitemporal MLS is evaluated along with UAV-based photogrammetry against terrestrial laser scanning reference data and merged with UAV-based bathymetry to create a two-year series of seamless digital terrain models. These allow the evaluation of the methodology for conducting high-resolution change analysis of the entire channel. The remote sensing based model of hydromorphology is completed by a new methodology for mapping the flow field in 3D. An acoustic Doppler current profiler (ADCP) is deployed on a remote-controlled boat with a survey-grade global navigation satellite system (GNSS) receiver, allowing the positioning of the areally sampled 3D flow vectors in 3D space as a point cloud and its interpolation into a 3D matrix allows a quantitative volumetric flow analysis. Multitemporal areal 3D flow field data show the evolution of the flow field during a snow-melt flood event. The combination of the underwater and dry topography with the flow field yields a compete model of river hydromorphology at the reach scale.