8 resultados para DIFFUSION-CONTROLLED GROWTH
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.
Resumo:
Tutkimuskäyttöön tarkoitettujen rekombinanttiproteiinien tuottaminen fermentoimalla on yleinen menetelmä bioteollisuudessa. Mikrobit kasvatetaan fermentorissa, joka tarjoaa kontrolloidun kasvuympäristön ja sopivat tuotto-olosuhteet halutulle tuotteelle. Eräs fermentointimuodoista on korkeatuottoinen ja pitkäkestoinen panossyöttökasvatus, jossa saavutetaan panoskavatusta merkittävästi korkeampi solutiheys jatkamalla panosvaiheen jälkeen kasvua rajoittavan substraatin syöttöä. Laboratoriomittakaavassa fermentorikasvatusten tilavuudet vaihtelevat litrasta kymmeniin ja niissä kasvatusta seurataan sekä ohjataan joko fermentorista tai tietokoneesta. Tyypillisessä fermentointiprosessissa operaattori tarkkailee muun muassa vaahdonkorkeutta sekä käynnistää pumppuja olosuhteiden muuttuessa. Tällaiset tehtävät ovat teollisen mittakaavan laitteistoissa usein automatisoituja. Diplomityön tarkoituksena oli päivittää kahden Turun yliopiston biotekniikan laboratoriossa sijaitsevan BioFlo® -sarjan pöytäfermentorin MS-DOS -pohjainen tietokoneohjausohjelma nykyaikaiseksi ja lisätä siihen etäseuranta ja -ohjaus. Ohjelmaan oli tarkoitus liittää erillinen optinen solutiheysanturi, jonka lukemien häiriötä haluttiin myös vähentää signaalinkäsittelyllä. Lisäksi vaahdonestoaineen ja indusorin lisäykset haluttiin automatisoida panossyöttökasvatuksessa. Vaahdonkorkeuden havaitsemisen mahdollisuutta konenäön menetelmin haluttiin selvittää, jotta vaahdonestoaineen automaattiset lisäykset voitaisiin toteuttaa nettikameran syötteen perusteella. Koekasvatuksilla osoitettiin päivitetyn ohjausohjelman toimivan panos- ja panossyöttömuodoilla. Uuden käyttöliittymän avulla pystyttiin automatisoimaan panoskasvatuksen lisäykset ja syöttönopeuden muutokset sekä tunnistamaan kasvatusliuosten vaahdonkorkeutta vaahdonestoaineen lisäykseen riittävällä kahden senttimetrin tarkkuudella. Lisäksi käyttöliittymä mahdollisti kasvatuksen ohjauksen ja seurauksen myös etänä. Työssä kehitetty ohjausohjelma julkaistiin avoimena ohjelmana ilman etä- ja nettikameratoimintoja. Ohjelma toimii hyvin BioFlo® -sarjan fermentorien käyttöliittymänä, mutta avoimen lähdekoodin ansiosta kuka tahansa voi hyödyntää ohjelmaa pohjana myös uusissa projekteissa tai muissa fermentorimalleissa.
Resumo:
Convective transport, both pure and combined with diffusion and reaction, can be observed in a wide range of physical and industrial applications, such as heat and mass transfer, crystal growth or biomechanics. The numerical approximation of this class of problemscan present substantial difficulties clue to regions of high gradients (steep fronts) of the solution, where generation of spurious oscillations or smearing should be precluded. This work is devoted to the development of an efficient numerical technique to deal with pure linear convection and convection-dominated problems in the frame-work of convection-diffusion-reaction systems. The particle transport method, developed in this study, is based on using rneshless numerical particles which carry out the solution along the characteristics defining the convective transport. The resolution of steep fronts of the solution is controlled by a special spacial adaptivity procedure. The serni-Lagrangian particle transport method uses an Eulerian fixed grid to represent the solution. In the case of convection-diffusion-reaction problems, the method is combined with diffusion and reaction solvers within an operator splitting approach. To transfer the solution from the particle set onto the grid, a fast monotone projection technique is designed. Our numerical results confirm that the method has a spacial accuracy of the second order and can be faster than typical grid-based methods of the same order; for pure linear convection problems the method demonstrates optimal linear complexity. The method works on structured and unstructured meshes, demonstrating a high-resolution property in the regions of steep fronts of the solution. Moreover, the particle transport method can be successfully used for the numerical simulation of the real-life problems in, for example, chemical engineering.
Resumo:
Western societies have been faced with the fact that overweight, impaired glucose regulation and elevated blood pressure are already prevalent in pediatric populations. This will inevitably mean an increase in later manifestations of cardio-metabolic diseases. The dilemma has been suggested to stem from fetal life and it is surmised that the early nutritional environment plays an important role in the process called programming. The aim of the present study was to characterize early nutritional determinants associating with cardio-metabolic risk factors in fetuses, infants and children. Further, the study was designated to establish whether dietary counseling initiated in early pregnancy can modify this cascade. Healthy mother-child pairs (n=256) participating in a dietary intervention study were followed from early pregnancy to childhood. The intervention included detailed dietary counseling by a nutritionist targeting saturated fat intake in excess of recommendations and fiber consumption below recommendations. Cardio-metabolic programming was studied by characterizing the offspring’s cardio-metabolic risk factors such as over-activation of the autonomic nervous system, elevated blood pressure and adverse metabolic status (e.g. serum high split proinsulin concentration). Fetal cardiac sympathovagal activation was measured during labor. Postnatally, children’s blood pressure was measured at six-month and four-year follow-up visits. Further, infants’ metabolic status was assessed by means of growth and serum biomarkers (32-33 split proinsulin, leptin and adiponectin) at the age of six months. This study proved that fetal cardiac sympathovagal activity was positively associated with maternal pre-pregnancy body mass index indicating adverse cardio-metabolic programming in the offspring. Further, a reduced risk of high split proinsulin in infancy and lower blood pressure in childhood were found in those offspring whose mothers’ weight gain and amount and type of fats in the diet during pregnancy were as recommended. Of note, maternal dietary counseling from early pregnancy onwards could ameliorate the offspring’s metabolic status by reducing the risk of high split proinsulin concentration, although it had no effect on the other cardio-metabolic markers in the offspring. At postnatal period breastfeeding proved to entail benefits in cardio-metabolic programming. Finally, the recommended dietary protein and total fat content in the child’s diet were important nutritional determinants reducing blood pressure at the age of four years. The intrauterine and immediate postnatal period comprise a window of opportunity for interventions aiming to reduce the risk of cardio-metabolic disorders and brings the prospect of achieving health benefits over one generation.
Resumo:
This study is part of the STRIP study, which is a long-term, randomized controlled trial, designed to decrease the exposure of children in the intervention group (n=540) to known risk factors of atherosclerosis. The main focus of the intervention was the quality of dietary fat. The control group (n=522) did not receive any individualized counselling. Food consumption was evaluated with food records, and blood samples were drawn and growth was measured regularly for all participating children from 13 months to 9 years. A subsample of 66 children participated in a dental health survey. The number of studies on children’s carbohydrate intake, especially fibre intake, is insufficient. The current international recommendations for fibre intake in children are based on average assumptions and data extrapolated from intakes in adults and intake recommendations for adults. Finnish nutrition recommendations lack strict recommendations for dietary fibre in children. Due to fibre’s high bulk volume, excessive dietary fibre is considered to decrease energy density and hence it may have an adverse effect on growth. If fats are reduced from the diet, the low-fat diet may become high in sucrose. Therefore, especially in the STRIP study, it is important to determine the use of fibre and sucrose in children and possible associations with growth and nutrition as well as dental health. The results of the present study indicate that a high fibre intake does not displace energy or disturb growth in children and that children with high fibre intake have better quality of diet than those with low fibre intake. Additionally, dietary fibre intake associated inversely with serum cholesterol concentration. Other carbohydrates also affected serum lipid levels as well, since total carbohydrates, sucrose, and fructose increased serum triglyceride concentration. Total carbohydrate intake reduced HDL cholesterol concentration only in children with apoE3 or apoE4 phenotype. Over the period from the 1970s to the 1990s the dental health of children in Finland has substantially improved despite an increase in sucrose intake. The improvement was thought to be due to improved dental hygiene and the use of fluorine. However, during the past twenty years improvement in dental health has stopped. The present study showed that high long-term sugar intake increases risk of caries in children. High intake of sugar had also negative effects on the diet of children, because it worsens dietary quality by displacing essential nutrients. Furthermore, the quality of dietary fat was worse in children with high sucrose intake. In this study the children’s high sucrose intake was not associated with overweight, but interestingly, it associated inversely with growth.
Resumo:
Diffusion tensor imaging (DTI) is an advanced magnetic resonance imaging (MRI) technique. DTI is based on free thermal motion (diffusion) of water molecules. The properties of diffusion can be represented using parameters such as fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, which are calculated from DTI data. These parameters can be used to study the microstructure in fibrous structure such as brain white matter. The aim of this study was to investigate the reproducibility of region-of-interest (ROI) analysis and determine associations between white matter integrity and antenatal and early postnatal growth at term age using DTI. Antenatal growth was studied using both the ROI and tract-based spatial statistics (TBSS) method and postnatal growth using only the TBSS method. The infants included to this study were born below 32 gestational weeks or birth weight less than 1,501 g and imaged with a 1.5 T MRI system at term age. Total number of 132 infants met the inclusion criteria between June 2004 and December 2006. Due to exclusion criteria, a total of 76 preterm infants (ROI) and 36 preterm infants (TBSS) were accepted to this study. The ROI analysis was quite reproducible at term age. Reproducibility varied between white matter structures and diffusion parameters. Normal antenatal growth was positively associated with white matter maturation at term age. The ROI analysis showed associations only in the corpus callosum. Whereas, TBSS revealed associations in several brain white matter areas. Infants with normal antenatal growth showed more mature white matter compared to small for gestational age infants. The gestational age at birth had no significant association with white matter maturation at term age. It was observed that good early postnatal growth associated negatively with white matter maturation at term age. Growth-restricted infants seemed to have delayed brain maturation that was not fully compensated at term, despite catchup growth.
Resumo:
Living organisms manage their resources in well evolutionary-preserved manner to grow and reproduce. Plants are no exceptions, beginning from their seed stage they have to perceive environmental conditions to avoid germination at wrong time or rough soil. Under favourable conditions, plants invest photosynthetic end products in cell and organ growth to provide best possible conditions for generation of offspring. Under natural conditions, however, plants are exposed to a multitude of environmental stress factors, including high light and insufficient light, drought and flooding, various bacteria and viruses, herbivores, and other plants that compete for nutrients and light. To survive under environmental challenges, plants have evolved signaling mechanisms that recognise environmental changes and perform fine-tuned actions that maintain cellular homeostasis. Controlled phosphorylation and dephosphorylation of proteins plays an important role in maintaining balanced flow of information within cells. In this study, I examined the role of protein phosphatase 2A (PP2A) on plant growth and acclimation under optimal and stressful conditions. To this aim, I studied gene expression profiles, proteomes and protein interactions, and their impacts on plant health and survival, taking advantage of the model plant Arabidopsis thaliana and the mutant approach. Special emphasis was made on two highly similar PP2A-B regulatory subunits, B’γ and B’ζ. Promoters of B’γ and B’ζ were found to be similarly active in the developing tissues of the plant. In mature leaves, however, the promoter of B’γ was active in patches in leaf periphery, while the activity of B’ζ promoter was evident in leaf edges. The partially overlapping expression patterns, together with computational models of B’γ and B’ζ within trimeric PP2A holoenzymes suggested that B’γ and B’ζ may competitively bind into similar PP2A trimmers and thus influence each other’s actions. Arabidopsis thaliana pp2a-b’γ and pp2a-b’γζ double mutants showed dwarfish phenotypes, indicating that B’γ and B’ζ are needed for appropriate growth regulation under favorable conditions. However, while pp2a-b’γ displayed constitutive immune responses and appearance of premature yellowings on leaves, the pp2a-b’γζ double mutant supressed these yellowings. More detailed analysis of defense responses revealed that B’γ and B’ζ mediate counteracting effects on salicylic acid dependent defense signalling. Associated with this, B’γ and B’ζ were both found to interact in vivo with CALCIUM DEPENDENT PROTEIN KINASE 1 (CPK1), a crucial element of salicylic acid signalling pathway against pathogens in plants. In addition, B’γ was shown to modulate cellular reactive oxygen species (ROS) metabolism by controlling the abundance of ALTERNATIVE OXIDASE 1A and 1D in mitochondria. PP2A B’γ and B’ζ subunits turned out to play crucial roles in the optimization of plant choices during their development. Taken together, PP2A allows fluent responses to environmental changes, maintenance of plant homeostasis, and grant survivability with minimised cost of redirection of resources from growth to defence.
Resumo:
In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.