6 resultados para Cyclin-dependent Kinases
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Cellen har ett s.k. cytoskelett som bl.a. ger stadga åt cellen och deltar i dess form- och rörelsefunktioner. Intermediärfilamenten är en viktig del av cytoskelettet och de har länge varit kända för sina väsentliga roller i att upprätthålla den cellulära organisationen och vävnadernas integritet. På senare år har man insett att intermediärfilamenten har en större funktionell mångsidighet än man tidigare tänkts sig, i och med att en rad olika studier har visat betydelsen av intermediärfilamenten vid olika signaleringprocesser. Dessa proteinnätverk samverkar nämligen med kinaser och andra viktiga signalfaktorer och deltar därmed i cellens signaleringmaskineri. Intermediärfilamentproteinet nestin används ofta som en markör för stamceller men dess fysiologiska funktioner är i stort sett okända. Interaktion mellan nestin och ett signalkomplex bestående av cyklin-beroende kinas 5 (eng. Cyclin-dependent kinase, Cdk5) och dess aktivatorprotein p35 upptäcktes i vårt laboratorium före denna avhandling påbörjades. Därför var syftet med min avhandling att undersöka den funktionella betydelsen av nestin i regleringen av Cdk5/p35 komplexet. Cdk5 är ett multifunktionellt kinas som reglerar både utvecklingen och stressreaktioner i nerver och muskler. Vi visade att nestin skyddar neuronala stamceller under oxidativ stress genom dess förmåga att hämma Cdk5s skadliga aktivitet. Genom att förankra Cdk5/p35 komplexet, reglerar nestin den subcellulära lokaliseringen av Cdk5/p35 och minskar klyvningen av p35 till den mer stabila aktivatorn p25. Vi demonstrerade också aktiveringsmekanismen för Cdk5 under differentiering av muskelceller. Proteinkinas C zeta (PKCzeta) avslöjades ha en förmåga att accelera klyvningen av p35 till p25, och därmed öka aktiviteten hos Cdk5. Nestin kunde genom sin förmåga att reglera Cdk5 signalkomplexet styra muskelcellernas differentiering. Denna doktorsavhandling har på ett avgörande vis ökat förståelsen av de reglerande mekanismer som styr Cdk5 aktivering. Avhandling presenterar nestin och PKCzeta som kritiska faktorer i denna reglering. Vidare innehåller avhandlingen ny information om de cellulära funktionerna hos nestin som vi har visat vara en viktig reglerare av cellernas överlevnad och differentiering.
Resumo:
Transcription factors play a crucial role in the regulation of cell behavior by modulating gene expression profiles. Previous studies have described a dual role for the AP-1 family transcription factor c-Jun in the regulation of cellular fate. In various cell types weak and transient activations of c-Jun N-terminal kinase (JNK) and c-Jun appear to contribute to proliferation and survival, whereas strong and prolonged activation of JNK and c-Jun result in apoptosis. These opposite roles played by c-Jun are cell type specific and the molecular mechanisms defining these antonymous c-Jun-mediated responses remain incompletely understood. c-Jun activity in transformed cells is regulated by signalling cascades downstream of oncoproteins such as Ras and Raf. In addition, the pro-proliferative role and the survival promoting function for c-Jun has been described in various cancer models. Furthermore, c-Jun was described to be overexpressed in different cancer types. However, the molecular mechanisms by which c-Jun exerts these oncogenic functions are not all clearly established. Therefore it is of primary interest to further identify molecular mechanisms and functions for c-Jun in cancer. Regulation of gene expression is tightly dependent on accurate protein-protein interactions. Therefore, co-factors for c-Jun may define the functions for c-Jun in cancer. Identification of protein-protein interactions promoting cancer may provide novel possibilities for cancer treatment. In this study, we show that DNA topoisomerase I (TopoI) is a transcriptional co-factor for c-Jun. Moreover, c-Jun and TopoI together promote expression of epidermal growth factor receptor (EGFR) in cancer cells. We also show that the clinically used TopoI inhibitor topotecan reduces EGFR expression. Importantly, the effect of TopoI on EGFR transcription was shown to depend on c-Jun as Jun-/- cells or cells treated with JNK inhibitor SP600125 are resistant to topotecan treatment both in regulation of EGFR expression and cell proliferation. Moreover, c-Jun regulates the nucleolar localization and the function of the ribonucleic acid (RNA) helicase DDX21, a previously identified member of c-Jun protein complex. In addition, c-Jun stimulates rRNA processing by supporting DDX21 rRNA binding. Finally, this study characterizes a DDX21 dependent expression of cyclin dependent kinase (Cdk) 6, a correlation of DDX21 expression with prostate cancer progression and a substrate binding dependency of DDX21 nucleolar localization in prostate cancer cells. Taken together, the results of this study validate the c-Jun-TopoI interaction and precise the c-Jun-DDX21 interaction. Moreover, these results show the importance for protein-protein interaction in the regulation of their cellular functions in cancer cell behavior. Finally, the results presented here disclose new exciting therapeutic opportunities for cancer treatment.
Resumo:
Breast cancer is a highly heterogenous malignancy, which despite of the similar histological type shows different clinical behaviour and response to therapy. Prognostic factors are used to estimate the risk for recurrence and the likelihood of treatment effectiveness. Because breast cancer is one of the most common causes of cancer death in women worldwide, identification of new prognostic markers are needed to develop more specific and targeted therapies. Cancer is caused by uncontrolled cell proliferation. The cell cycle is controlled by specific proteins, which are known as cyclins. They function at important checkpoints by activating cyclin-dependent kinase enzymes. Overexpression of different cyclins has been linked to several cancer types and altered expression of cyclins A, B1, D1 and E has been associated with poor survival. Little is known about the combined expression of cyclins in relation to the tumour grade, breast cancer subtype and other known prognostic factors. In this study cyclins A, B1 and E were shown to correlate with histological grade, Ki-67 and HER2 expression. Overexpression of cyclin D1 correlated with receptor status and non-basal breast cancer suggesting that cyclin D1 might be a marker of good prognosis. Proteolysis in the surrounding tumour stroma is increased during cancer development. Matrix metalloproteinases (MMPs) are proteolytic enzymes that are capable of degrading extracellular matrix proteins. Increased expression and activation of several MMPs have been found in many cancers and MMPs appear to be important regulators of invasion and metastasis. In this study MMP-1 expression was analysed in breast cancer epithelial cells and in cancer associated stromal cells. MMP-1 expression by breast cancer epithelial cells was found to carry an independent prognostic value as did Ki-67 and bcl-2. The results suggest that in addition to stromal cells MMP-1 expression in tumour cells control breast cancer progression. Decorin is a small proteoglycan and an important component of the extracellular matrix. Decorin has been shown to inhibit growth of tumour cells and reduced decorin expression is associated with a poor prognosis in several cancer types. There has been some suspicion wheather different cancer cells express decorin. In this study decorin expression was shown to localize only in the cells of the original stroma, while breast cancer epithelial cells were negative for decorin expression. However, transduction of decorin in decorin-negative human breast cancer cells markedly modulated the growth pattern of these cells. This study provides evidence that targeted decorin transduction to breast cancer cells could be used as a novel adjuvant therapy in breast malignancies.
Resumo:
The molecular functions of the non-cell cycle-related Cyclin-dependent kinase 5 (Cdk5) have been of primary interest within the neuroscience field, but novel undertakings are constantly emerging for the kinase in tissue homeostasis, as well as in diseases such as diabetes and cancer. Although Cdk5 activation is predominantly regulated by specific non-cyclin activator protein binding, additional mechanisms have proved to orchestrate Cdk5 signaling in cells. For example, the interaction between the intermediate filament protein nestin and Cdk5 has been proposed to determine cellular fate during neuronal apoptosis through nestin-dependent adjustment of the sensitive balance and turnover of Cdk5 activators. While nestin constitutes a crucial regulatory scaffold for appropriate Cdk5 activation in apoptosis, Cdk5 itself phosphorylates nestin with the consequence of filament reorganization in both neuronal progenitors and differentiating muscle cells. Interestingly, the two proteins are often found coexpressed in various tissues and cell types, proposing that nestin-mediated scaffolding of Cdk5 and its activators may be applicable to other tissue systems as well. In the literature, the molecular functions of nestin have remained in the shade, as it is mostly exploited as a marker protein for progenitor cells. In light of these studies, the aim of this thesis was to assess the importance of the nestin scaffold in regulation of Cdk5 actions in cell fate decisions. This thesis can be subdivided into two major projects: one that studied the nature of the Cdk5-nestin interplay in muscle, and one that assessed their role in prostate cancer. During differentiation of a myoblast cell line, the filament formation properties of nestin was found to be crucial in directing Cdk5 activity, with direct consequences on the process of differentiation. Also the genetic knockout of nestin was found to influence Cdk5 activity, although differentiation per se was not affected. Instead, the genetic ablation of nestin had broad consequences on muscle homeostasis and regeneration. While the nestin-mediated regulation of Cdk5 in muscle was found to act in multiple ways, the connection remained more elusive in cancer models. Cdk5 was, however, established as a significant determinant of prostate cancer proliferation; a behavior uncharacteristic for this differentiation-associated kinase. Through complex and simultaneous regulation of two major prostate cancer pathways, Cdk5 was placed upstream of both Akt kinase and the androgen receptor. Its action on proliferation was nonetheless mainly exerted through the Akt signaling pathway in various cancer models. In summary, this thesis contributed to the knowledge of Cdk5 regulation and functions in two atypical settings; proliferation (in a cancer framework) and muscle differentiation, which is a poorly understood model system in the Cdk5 field. This balance between proliferation and differentiation implemented by Cdk5 is ultimately regulated (where present) by the dynamics of the cytoskeletal nestin scaffold.
Resumo:
The microenvironment within the tumor plays a central role in cellular signaling. Rapidly proliferating cancer cells need building blocks for structures as well as nutrients and oxygen for energy production. In normal tissue, the vasculature effectively transports oxygen, nutrient and waste products, and maintains physiological pH. Within a tumor however, the vasculature is rarely sufficient for the needs of tumor cells. This causes the tumor to suffer from lack of oxygen (hypoxia) and nutrients as well as acidification, as the glycolytic end product lactate is accumulated. Cancer cells harbor mutations enabling survival in the rough microenvironment. One of the best characterized mutations is the inactivation of the von Hippel-Lindau protein (pVHL) in clear cell renal cell carcinoma (ccRCC). Inactivation causes constitutive activation of hypoxia-inducible factor HIF which is an important survival factor regulating glycolysis, neovascularization and apoptosis. HIFs are normally regulated by HIF prolyl hydroxylases (PHDs), which in the presence of oxygen target HIF α-subunit to ubiquitination by pVHL and degradation by proteasomes. In my thesis work, I studied the role of PHDs in the survival of carcinoma cells in hypoxia. My work revealed an essential role of PHD1 and PHD3 in cell cycle regulation through two cyclin-dependent kinase inhibitors (CKIs) p21 and p27. Depletion of PHD1 or PHD3 caused a cell cycle arrest and subjected the carcinoma cells to stress and impaired the survival.