4 resultados para Cultured cells

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cholesterol (Chol) is an important lipid in cellular membranes functioning both as a membrane fluidity regulator, permeability regulator and co-factor for some membrane proteins, e.g. G-protein coupled receptors. It also participates in the formation of signaling platforms and gives the membrane more mechanical strenght to prevent osmotic lysis of the cell. The sterol structure is very conserved and already minor structural modifications can completely abolish its membrane functions. The right interaction with adjacent lipids and the preference of certain lipid structures over others are also key factors in determining the membrane properties of cholesterol. Because of the many important properties of cholesterol it is of value to understand the forces and structural properties that govern the membrane behavior of this sterol. In this thesis we have used established fluorescence spectroscopy methods to study the membrane behavior of both cholesterol and some of its 3β-modified analogs. Using several fluorescent probes we have established how the acyl chain order of the two main lipid species, sphingomyelin (SM) and phosphatidylcholine (PC) affect sterol partitioning as well as characterized the membrane properties of 3β-aminocholesterol and cholesteryl phosphocholine. We concluded that cholesterol prefers SM over PC at equal acyl chain order, indicating that other structural properties besides the acyl chain order are important for sphingomyelin-sterol interactions. A positive charge at the 3β position only caused minor changes in the sterol membrane behavior compared to cholesterol. A large phosphocholine head group caused a disruption in membrane packing together with other membrane lipids with large head groups, but was also able to form stable fluid bilayers together with ceramide and cholesterol. The Ability of the large head group sterol to form bilayers together with ceramide was further explored in the last paper where cholesteryl phosphocholine/ceramide (Chol-PC/Cer) complexes were successfully used to transfer ceramide into cultured cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selostus: Glysiinin ja alaniinin vaikutus CR1aa-liuoksessa viljeltyyn kumulussolullisen ja -soluttoman naudanalkion kehitykseen

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silica based biomaterials, such as melt-derived bioactive glasses and sol-gel glasses, have been used for a long time in bone healing applications because of their ability to form hydroxyapatite and to stimulate stem cell proliferation and differentiation. In this study, bone marrow derived cells were cultured with bioactive glass and sol-gel silica, and seeded into porous polymer composite scaffolds that were then implanted femorally and subcutaneously in rats to monitor their migration inside host tissue. Bone marrow derived cells were also injected intraperitoneally. Transplanted cells migrated to various tissues inside the host, including the lung, liver spleen, thymus and bone marrow. The method of transplantation affected the time frame of cell migration, with intraperitoneal injection being the fastest and femoral implantation the slowest, but not the target tissues of migration. Transplanted donor cells had a limited lifetime in the host and were later eliminated from all tested tissues. Bioactive glass, however, affected the implanted cells negatively. When it was present in the scaffold no donor cells were found in any of the tested host tissues. Bioactive glass S53P4 was found to support both osteoblastic and osteoclastic phenotype of bone marrow derived cells, but it was resistant to the resorbing effect of osteoclastic bone marrow derived cells, showing that bioactive glass is rather dissolved through physicochemical reactions than resorbed by cells. Fast-dissolving silica sol gel in microparticulate form was found to increase collagen formation by bone marrow derived cells, while slow dissolving silica microparticles enhanced their proliferation, suggesting that the dissolution rate of silica controls the response of bone marrow derived cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pluripotent cells have the potential to differentiate into all somatic cell types. As the adult human body is unable to regenerate various tissues, pluripotent cells provide an attractive source for regenerative medicine. Human embryonic stem cells (hESCs) can be isolated from blastocyst stage embryos and cultured in the laboratory environment. However, their use in regenerative medicine is restricted due to problems with immunosuppression by the host and ethical legislation. Recently, a new source of pluripotent cells was established via the direct reprogramming of somatic cells. These human induced pluripotent stem cells (hiPSCs) enable the production of patient specific cell types. However, numerous challenges, such as efficient reprogramming, optimal culture, directed differentiation, genetic stability and tumor risk need to be solved before the launch of therapeutic applications. The main objective of this thesis was to understand the unique properties of human pluripotent stem cells. The specific aims were to identify novel factors involved in maintaining pluripotency, characterize the effects of low oxygen culture on hESCs, and determine the high resolution changes in hESCs and hiPSCs during culture and reprogramming. As a result, the previously uncharacterized protein L1TD1 was determined to be specific for pluripotent cells and essential for the maintenance of pluripotency. The low oxygen culture supported undifferentiated growth and affected expression of stem cell associated transcripts. High resolution screening of hESCs identified a number of culture induced copy number variations and loss of heterozygosity changes. Further, screening of hiPSCs revealed that reprogramming induces high resolution alterations. The results obtained in this thesis have important implications for stem cell and cancer biology and the therapeutic potential of pluripotent cells.