5 resultados para Crystalline Secretion
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The objective of industrial crystallization is to obtain a crystalline product which has the desired crystal size distribution, mean crystal size, crystal shape, purity, polymorphic and pseudopolymorphic form. Effective control of the product quality requires an understanding of the thermodynamics of the crystallizing system and the effects of operation parameters on the crystalline product properties. Therefore, obtaining reliable in-line information about crystal properties and supersaturation, which is the driving force of crystallization, would be very advantageous. Advanced techniques, such asRaman spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and in-line imaging techniques, offer great potential for obtaining reliable information during crystallization, and thus giving a better understanding of the fundamental mechanisms (nucleation and crystal growth) involved. In the present work, the relative stability of anhydrate and dihydrate carbamazepine in mixed solvents containing water and ethanol were investigated. The kinetics of the solvent mediated phase transformation of the anhydrate to hydrate in the mixed solvents was studied using an in-line Raman immersion probe. The effects of the operation parameters in terms of solvent composition, temperature and the use of certain additives on the phase transformation kineticswere explored. Comparison of the off-line measured solute concentration and the solid-phase composition measured by in-line Raman spectroscopy allowedthe identification of the fundamental processes during the phase transformation. The effects of thermodynamic and kinetic factors on the anhydrate/hydrate phase of carbamazepine crystals during cooling crystallization were also investigated. The effect of certain additives on the batch cooling crystallization of potassium dihydrogen phosphate (KDP) wasinvestigated. The crystal growth rate of a certain crystal face was determined from images taken with an in-line video microscope. An in-line image processing method was developed to characterize the size and shape of thecrystals. An ATR FTIR and a laser reflection particle size analyzer were used to study the effects of cooling modes and seeding parameters onthe final crystal size distribution of an organic compound C15. Based on the obtained results, an operation condition was proposed which gives improved product property in terms of increased mean crystal size and narrowersize distribution.
Resumo:
Post-testicular sperm maturation occurs in the epididymis. The ion concentration and proteins secreted into the epididymal lumen, together with testicular factors, are believed to be responsible for the maturation of spermatozoa. Disruption of the maturation of spermatozoa in the epididymis provides a promising strategy for generating a male contraceptive. However, little is known about the proteins involved. For drug development, it is also essential to have tools to study the function of these proteins in vitro. One approach for screening novel targets is to study the secretory products of the epididymis or the G protein-coupled receptors (GPCRs) that are involved in the maturation process of the spermatozoa. The modified Ca2+ imaging technique to monitor release from PC12 pheochromocytoma cells can also be applied to monitor secretory products involved in the maturational processes of spermatozoa. PC12 pheochromocytoma cells were chosen for evaluation of this technique as they release catecholamines from their cell body, thus behaving like endocrine secretory cells. The results of the study demonstrate that depolarisation of nerve growth factor -differentiated PC12 cells releases factors which activate nearby randomly distributed HEL erythroleukemia cells. Thus, during the release process, the ligands reach concentrations high enough to activate receptors even in cells some distance from the release site. This suggests that communication between randomly dispersed cells is possible even if the actual quantities of transmitter released are extremely small. The development of a novel method to analyse GPCR-dependent Ca2+ signalling in living slices of mouse caput epididymis is an additional tool for screening for drug targets. By this technique it was possible to analyse functional GPCRs in the epithelial cells of the ductus epididymis. The results revealed that, both P2X- and P2Y-type purinergic receptors are responsible for the rapid and transient Ca2+ signal detected in the epithelial cells of caput epididymides. Immunohistochemical and reverse transcriptase-polymerase chain reaction (RTPCR) analyses showed the expression of at least P2X1, P2X2, P2X4 and P2X7, and P2Y1 and P2Y2 receptors in the epididymis. Searching for epididymis-specific promoters for transgene delivery into the epididymis is of key importance for the development of specific models for drug development. We used EGFP as the reporter gene to identify proper promoters to deliver transgenes into the epithelial cells of the mouse epididymis in vivo. Our results revealed that the 5.0 kb murine Glutathione peroxidase 5 (GPX5) promoter can be used to target transgene expression into the epididymis while the 3.8 kb Cysteine-rich secretory protein-1 (CRISP-1) promoter can be used to target transgene expression into the testis. Although the visualisation of EGFP in living cells in culture usually poses few problems, the detection of EGFP in tissue sections can be more difficult because soluble EGFP molecules can be lost if the cell membrane is damaged by freezing, sectioning, or permeabilisation. Furthermore, the fluorescence of EGFP is dependent on its conformation. Therefore, fixation protocols that immobilise EGFP may also destroy its usefulness as a fluorescent reporter. We therefore developed a novel tissue preparation and preservation techniques for EGFP. In addition, fluorescence spectrophotometry with epididymal epithelial cells in suspension revealed the expression of functional purinergic, adrenergic, cholinergic and bradykinin receptors in these cell lines (mE-Cap27 and mE-Cap28). In conclusion, we developed new tools for studying the role of the epididymis in sperm maturation. We developed a new technique to analyse GPCR dependent Ca2+ signalling in living slices of mouse caput epididymis. In addition, we improved the method of detecting reporter gene expression. Furthermore, we characterised two epididymis-specific gene promoters, analysed the expression of GPCRs in epididymal epithelial cells and developed a novel technique for measurement of secretion from cells.
Resumo:
I studied the associations between migration-related physiological regulation (corticosterone) and body condition of barn swallows (Hirundo rustica L.). An additional purpose was to determine whether oxidative stress and biotransformation activity vary seasonally. Since physiological regulation, biotransformation activity and the stress involved may be important factors for body condition during migration; they may have direct effects on migration success. This in turn may influence other important life history stages, such as breeding and moult. In the thesis I used barn swallow data of the Finnish Ringing Centre (1997–2009), consisting of all juveniles ringed in the nests and recaptured from night roosts later the same autumn. Before the autumn migration in Finland I also captured, ringed and sampled barn swallows from night roosts in 2003, 2006, 2007 and 2011. Samples preceding spring migration in South Africa were collected in 2007. Juvenile barn swallows started to migrate southward in mid-August (first broods). Second broods started their migration at a younger age and almost a month later than first broods (mid-September). Barn swallows increased body mass and accumulated fat for the autumn migration. In the course of the autumn they seemed to be able to prevent the loss of energy already accumulated, since the proportional overnight mass loss, fat loss and faecal production decreased. Surprisingly, corticosterone, the major energy-regulating hormone in birds, seemed not to be involved in the fuelling process. Previous studies with warblers, sparrows and shorebirds had shown that during migration, the baseline levels of corticosterone were elevated in order to facilitate fuelling. It is possible that for Finnish barn swallows the most important fuelling place is in southern Europe, since northern and eastern populations migrate via the Balkan Peninsula. However, the adrenocortical stress response of Finnish barn swallows in good body condition was lower than that of those in poor body condition. Birds clearly suppressed the response, probably to prevent the catabolic effects of excessive corticosterone levels; birds cannot afford to lose muscle mass before migration. South African barn swallows had high levels of baseline corticosterone, but this may have been associated with the high oxidative damage and biotransformation activity of those birds. Barn swallows in spring and summer had low biotransformation activity and intermediate oxidative stress, which was probably related to breeding. Autumn birds had low biotransformation activity and oxidative stress but high redox enzyme activities in some migration-related enzymes.