20 resultados para Coronary Vessels
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.
Resumo:
American Heart Journal Vol. 152, Issue 3, pp 538-542, 2006
Resumo:
Physiol Meas. 2007 Oct;28(10):1189-200. Epub 2007 Sep 18.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
In recent years, one important objective of cardiovascular research has been to find new markers that would improve the risk stratification and diagnosis of patients presenting with symptoms of acute coronary syndrome (ACS). Pregnancy-associated plasma protein A (PAPP-A) is a large metalloproteinase involved in insulin-like growth factor signalling. It is expressed in various tissues and seems to be involved in many physiological and pathological processes, such as folliculogenesis, bone formation, wound healing, pregnancy and atherosclerosis. The aim of this thesis was to investigate PAPP-A in ACS patients. Circulating concentrations of PAPP-A had been previously shown to be elevated in ACS. In this study it was revealed that the form of PAPP-A causing this elevation was the free noncomplexed PAPP-A. Thus, the form of PAPP-A in the circulation of ACS patients differed from the complexed PAPP-A form abundantly present in the circulation during pregnancy. A point-of-care method based on time-resolved immunofluorometric assays was developed, which enabled the rapid detection of free PAPP-A. The method was found to perform well with serum and heparin plasma samples as well as with heparinized whole blood samples. With this method the concentrations of free PAPP-A in healthy individuals were shown to be negligible. When the clinical performance of the method was evaluated with serum samples from ACS patients, it was shown that the free PAPP-A concentration in the admission sample was an independent predictor of myocardial infarction and death. Moreover, as a prognostic marker, free PAPP-A was revealed to be superior to total PAPPA, i.e. the combination of free and complexed PAPP-A, which has been measured by the other groups in this field. As heparin products are widely used as medication in ACS patients, the effect of heparin products on free PAPP-A molecule and circulating concentrations were also investigated in this study. It was shown that intravenous administration of low molecular weight or unfractionated heparin elicits a rapid release of free PAPP-A into the circulation in haemodialysis patients and patients undergoing angiography. Moreover, the interaction between PAPP-A and heparin was confirmed in gel filtration studies. Importantly, the patients included in the clinical evaluation of the free PAPP-A detection method developed had not received any heparin product medication before the admission sample and thus the results were not affected by the heparin effect. In conclusion, free PAPP-A was identified as a novel marker associated with ACS. The point-of-care methods developed enable rapid detection of this molecule which predicts adverse outcome when measured in the admission sample of ACS patients. However, the effect revealed of heparin products on circulating PAPP-A concentrations should be acknowledged when further studies are conducted related to free or total PAPP-A in ACS.
Resumo:
Coronary artery disease (CAD) is a chronic process that evolves over decades and may culminate in myocardial infarction (MI). While invasive coronary angiography (ICA) is still considered the gold standard of imaging CAD, non-invasive assessment of both the vascular anatomy and myocardial perfusion has become an intriguing alternative. In particular, computed tomography (CT) and positron emission tomography (PET) form an attractive combination for such studies. Increased radiation dose is, however, a concern. Our aim in the current thesis was to test novel CT and PET techniques alone and in hybrid setting in the detection and assessment of CAD in clinical patients. Along with diagnostic accuracy, methods for the reduction of the radiation dose was an important target. The study investigating the coronary arteries of patients with atrial fibrillation (AF) showed that CAD may be an important etiology of AF because a high prevalence of CAD was demonstrated within AF patients. In patients with suspected CAD, we demonstrated that a sequential, prospectively ECG-triggered CT technique was applicable to nearly 9/10 clinical patients and the radiation dose was over 60% lower than with spiral CT. To detect the functional significance of obstructive CAD, a novel software for perfusion quantification, CarimasTM, showed high reproducibility with 15O-labelled water in PET, supporting feasibility and good clinical accuracy. In a larger cohort of 107 patients with moderate 30-70% pre-test probability of CAD, hybrid PET/CT was shown to be a powerful diagnostic method in the assessment of CAD with diagnostic accuracy comparable to that of invasive angiography and fractional flow reserve (FFR) measurements. A hybrid study may be performed with a reasonable radiation dose in a vast majority of the cases, improving the performance of stand-alone PET and CT angiography, particularly when the absolute quantification of the perfusion is employed. These results can be applied into clinical practice and will be useful for daily clinical diagnosis of CAD.
Resumo:
Lipotoxicity is a condition in which fatty acids (FAs) are not efficiently stored in adipose tissue and overflow to non-adipose tissue, causing organ damages. A defect of adipose tissue FA storage capability can be the primary culprit in the insulin resistance condition that characterizes many of the severe metabolic diseases that affect people nowadays. Obesity, in this regard, constitutes the gateway and risk factor of the major killers of modern society, such as cardiovascular disease and cancer. A deep understanding of the pathogenetic mechanisms that underlie obesity and the insulin resistance syndrome is a challenge for modern medicine. In the last twenty years of scientific research, FA metabolism and dysregulations have been the object of numerous studies. Development of more targeted and quantitative methodologies is required on one hand, to investigate and dissect organ metabolism, on the other hand to test the efficacy and mechanisms of action of novel drugs. The combination of functional and anatomical imaging is an answer to this need, since it provides more understanding and more information than we have ever had. The first purpose of this study was to investigate abnormalities of substrate organ metabolism, with special reference to the FA metabolism in obese drug-naïve subjects at an early stage of disease. Secondly, trimetazidine (TMZ), a metabolic drug supposed to inhibit FA oxidation (FAO), has been for the first time evaluated in obese subjects to test a whole body and organ metabolism improvement based on the hypothesis that FAO is increased at an early stage of the disease. A third objective was to investigate the relationship between ectopic fat accumulation surrounding heart and coronaries, and impaired myocardial perfusion in patients with risk of coronary artery disease (CAD). In the current study a new methodology has been developed with PET imaging with 11C-palmitate and compartmental modelling for the non-invasive in vivo study of liver FA metabolism, and a similar approach has been used to study FA metabolism in the skeletal muscle, the adipose tissue and the heart. The results of the different substudies point in the same direction. Obesity, at the an early stage, is associated with an impairment in the esterification of FAs in adipose tissue and skeletal muscle, which is accompanied by the upregulation in skeletal muscle, liver and heart FAO. The inability to store fat may initiate a cascade of events leading to FA oversupply to lean tissue, overload of the oxidative pathway, and accumulation of toxic lipid species and triglycerides, and it was paralleled by a proportional growth in insulin resistance. In subjects with CAD, the accumulation of ectopic fat inside the pericardium is associated with impaired myocardial perfusion, presumably via a paracrine/vasocrine effect. At the beginning of the disease, TMZ is not detrimental to health; on the contrary at the single organ level (heart, skeletal muscle and liver) it seems beneficial, while no relevant effects were found on adipose tissue function. Taken altogether these findings suggest that adipose tissue storage capability should be preserved, if it is not possible to prevent excessive fat intake in the first place.
Resumo:
Syövän käyttäytymiseen ja ennusteeseen vaikuttavat monet tekijät, muun muassa muutokset syöpäsoluissa sekä kasvainta ympäröivässä mikroympäristössä. Tutkimuksen tavoitteena oli tutkia uusia prediktiivisiä ja prognostisia ennustetekijöitä syöpäsoluissa (EGFR geenikopiomäärä, EGFR, onkogeeni pim-1) sekä syöpäkasvaimen mikroympäristöön kuuluvissa imuteissä (CLEVER-1, podoplaniini), makrofageissa (CD68, CLEVER-1) ja T lymfosyyteissä (CD3) kolorektaalisyövässä. Lisäksi tutkittiin imuteiden molekulaarisia ominaisuuksia tarkemmin (CD73, LYVE-1, podoplaniini) kuten myös lymfosyyttien ja dendriittisolujen liikennöintiä imuteissä. Tutkimustulokset osoittavat että korkea Pim-1 ekspressiotaso, suuri peritumoraalinen CD68+ makrofagimäärä sekä varhaisen vaiheen taudissa suuri CLEVER-1+ peritumoraalinen makrofagimäärä ovat hyvän ennusteen tekijöitä kolorektaalisyövässä. Metastaattisessa taudissa sen sijaan suuri määrä CLEVER-1+ makrofageja, sekä intra- että peritumoraalisesti, liittyy huonoon tautiennusteeseen. EGFR geenikopiomäärä, EGFR proteiinipitoisuuden ohjaaman hopea in situ hybridisaatiomenetelmän avulla määritettynä, ennusti vastetta anti-EGFR hoidolle metastaattisessa kolorektaalisyövässä tarkemmin kuin nykyisin rutiinisti käytössä oleva KRAS määritys. Lisäksi havaittiin että imutiet ovat monimuotoisia imutiemarkkeri ekspressionsa suhteen sekä normaali- että syöpäkudoksissa. CD73 molekyylin funktio imuteissä poikkesi selvästi molekyylin funktiosta verisuonissa. Yhteenvetona voidaan todeta että kolorektaalisyövän ennusteeseen vaikuttavien tekijöiden merkitys vaihtelee taudin levinneisyysasteen sekä imuteiden että makrofagien sijainnin perusteella. Korkea Pim-1 ilmentyminen on yhteydessä hyvään kolorektaalisyöpäennusteeseen. Lisäksi EGFR geenikopiomäärä osoittautui lupaavaksi uudeksi prediktiiviseksi ennustetekijäksi KRAS villintyypin metastaattista kolorektaalisyöpää sairastavilla potilailla.
Resumo:
Background: Approximately 11,000 revascularization procedures, either percutaneous coronary interventions (PCI) or coronary artery bypass grafting surgery (CABG), are performed yearly in Finland for coronary artery disease. Periprocedural risk factors for mortality and morbidity as well as long-term outcome have been extensively studied in general populations undergoing revascularization. Treatment choice between PCI and CABG in many high risk groups and risk-stratification, however, needs clarification and there is still room for improvement in periprocedural outcomes. Materials and methods: Cohorts of patients from Finnish hospitals revascularized between 2001 and 2011 were retrospectively analyzed. Patient records were reviewed for baseline variables and postprocedural outcomes (stroke, myocardial infarction, quality of life measured by the EQ-5D –questionnaire, repeat revascularization, bleeding episodes). Data on date and mode of death was acquired from Statistics Finland. Statistical analysis was performed to identify predictors of adverse events and compare procedures. Results: Postoperative administration of blood products (red blood cells, fresh frozen plasma, platelets) after isolated CABG independently and dose-dependently increases the risk of stroke. Patients 80 years or older who underwent CABG had better survival at 5 years compared to those who underwent PCI. After adjusting for baseline differences survival was similar. Patients on oral anticoagulation (OAC) for atrial fibrillation (AF) treated with CABG had better survival and overall outcome at 3 years compared to PCI patients. There was no difference in incidence of stroke or bleeding episodes. Differences in outcome remained significant after adjusting for propensity score. Lower health-related quality of life (HRQOL) scores as measured by the visual analogue scale (VAS) of the EQ-5D questionnaire at 6 months after CABG predicted later major adverse cardiac and cerebrovascular events (MACCE). Deteriorating function and VAS scores between 0 and 6 months on the EQ-5D also independently predicted later MACCE. Conclusions: Administration of blood products can increase the risk of stroke after CABG and liberal use of transfusions should be avoided. In the frail subpopulations of patients on OAC and octogenarians CABG appears to offer superior long-term outcome as compared to PCI. Deteriorating HRQOL scores predict later adverse events after CABG. Keywords: percutaneous coronary intervention, coronary artery bypass grafting, age over 80, transfusion, anticoagulants, coronary artery disease, health-related quality of life, outcome.
Resumo:
Antithrombotic treatment of patients with atrial fibrillation (AF) undergoing percutaneous coronary intervention (PCI) is a delicate balancing between the risk of thromboembolism and the risk of bleeding. The purpose of this dissertation was to analyze current antithrombotic treatment strategies at the periprocedural stage and report outcomes in-hospital and at 1-month follow-up, and to evaluate the effect of renal impairment and predictive values of various bleeding scores on 1-year outcome after PCI in patients with AF. The first article was based on retrospective data from 7 Finnish hospitals between 2002–2006 (n=377), while the others were based on a prospective 17-center European register (AFCAS) gathered between 2008–2010 (n=963). The main findings in patients with AF undergoing PCI were: The use of glycoprotein IIb/IIIa inhibitors during PCI was associated with a four- to five-fold increase in the risk of major bleeding (I). Uninterrupted warfarin treatment did not increase perioperative complications and seemed to decrease bleeding complications compared to heparin bridging (II). Already mild renal impairment (eGFR 60–90mL/min) was associated with a 2.3-fold risk of all-cause mortality during the 12 months following PCI (III). Major adverse cardiac events occurred in 4.5% and bleeding complications in 7.1% of patients in the AFCAS register by 1-month follow-up (IV). In a study of patients in AFCAS register, all currently used bleeding risk scores were poor predictors of bleeding complications by 1-year follow-up (V). The findings will help improve treatment strategies for this fragile patient population with a high risk of bleeding and thrombotic complications.