9 resultados para Conservation of biodiversity

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines the local and regional scale determinants of biodiversity patterns using existing species and environmental data. The research focuses on agricultural environments that have experienced rapid declines of biodiversity during past decades. Existing digital databases provide vast opportunities for habitat mapping, predictive mapping of species occurrences and richness and understanding the speciesenvironment relationships. The applicability of these databases depends on the required accuracy and quality of the data needed to answer the landscape ecological and biogeographical questions in hand. Patterns of biodiversity arise from confounded effects of different factors, such as climate, land cover and geographical location. Complementary statistical approaches that can show the relative effects of different factors are needed in biodiversity analyses in addition to classical multivariate models. Better understanding of the key factors underlying the variation in diversity requires the analyses of multiple taxonomic groups from different perspectives, such as richness, occurrence, threat status and population trends. The geographical coincidence of species richness of different taxonomic groups can be rather limited. This implies that multiple geographical regions should be taken into account in order to preserve various groups of species. Boreal agricultural biodiversity and in particular, distribution and richness of threatened species is strongly associated with various grasslands. Further, heterogeneous agricultural landscapes characterized by moderate field size, forest patches and non-crop agricultural habitats enhance the biodiversity of rural environments. From the landscape ecological perspective, the major threats to Finnish agricultural biodiversity are the decline of connected grassland habitat networks, and general homogenization of landscape structure resulting from both intensification and marginalization of agriculture. The maintenance of key habitats, such as meadows and pastures is an essential task in conservation of agricultural biodiversity. Furthermore, a larger landscape context should be incorporated in conservation planning and decision making processes in order to respond to the needs of different species and to maintain heterogeneous rural landscapes and viable agricultural diversity in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic diversity is one of the levels of biodiversity that the World Conservation Union (IUCN) has recognized as being important to preserve. This is because genetic diversity is fundamental to the future evolution and to the adaptive flexibility of a species to respond to the inherently dynamic nature of the natural world. Therefore, the key to maintaining biodiversity and healthy ecosystems is to identify, monitor and maintain locally-adapted populations, along with their unique gene pools, upon which future adaptation depends. Thus, conservation genetics deals with the genetic factors that affect extinction risk and the genetic management regimes required to minimize the risk. The conservation of exploited species, such as salmonid fishes, is particularly challenging due to the conflicts between different interest groups. In this thesis, I conduct a series of conservation genetic studies on primarily Finnish populations of two salmonid fish species (European grayling, Thymallus thymallus, and lake-run brown trout, Salmo trutta) which are popular recreational game fishes in Finland. The general aim of these studies was to apply and develop population genetic approaches to assist conservation and sustainable harvest of these populations. The approaches applied included: i) the characterization of population genetic structure at national and local scales; ii) the identification of management units and the prioritization of populations for conservation based on evolutionary forces shaping indigenous gene pools; iii) the detection of population declines and the testing of the assumptions underlying these tests; and iv) the evaluation of the contribution of natural populations to a mixed stock fishery. Based on microsatellite analyses, clear genetic structuring of exploited Finnish grayling and brown trout populations was detected at both national and local scales. Finnish grayling were clustered into three genetically distinct groups, corresponding to northern, Baltic and south-eastern geographic areas of Finland. The genetic differentiation among and within population groups of grayling ranged from moderate to high levels. Such strong genetic structuring combined with low genetic diversity strongly indicates that genetic drift plays a major role in the evolution of grayling populations. Further analyses of European grayling covering the majority of the species’ distribution range indicated a strong global footprint of population decline. Using a coalescent approach the beginning of population reduction was dated back to 1 000-10 000 years ago (ca. 200-2 000 generations). Forward simulations demonstrated that the bottleneck footprints measured using the M ratio can persist within small populations much longer than previously anticipated in the face of low levels of gene flow. In contrast to the M ratio, two alternative methods for genetic bottleneck detection identified recent bottlenecks in six grayling populations that warrant future monitoring. Consistent with the predominant role of random genetic drift, the effective population size (Ne) estimates of all grayling populations were very low with the majority of Ne estimates below 50. Taken together, highly structured local populations, limited gene flow and the small Ne of grayling populations indicates that grayling populations are vulnerable to overexploitation and, hence, monitoring and careful management using the precautionary principles is required not only in Finland but throughout Europe. Population genetic analyses of lake-run brown trout populations in the Inari basin (northernmost Finland) revealed hierarchical population structure where individual populations were clustered into three population groups largely corresponding to different geographic regions of the basin. Similar to my earlier work with European grayling, the genetic differentiation among and within population groups of lake-run brown trout was relatively high. Such strong differentiation indicated that the power to determine the relative contribution of populations in mixed fisheries should be relatively high. Consistent with these expectations, high accuracy and precision in mixed stock analysis (MSA) simulations were observed. Application of MSA to indigenous fish caught in the Inari basin identified altogether twelve populations that contributed significantly to mixed stock fisheries with the Ivalojoki river system being the major contributor (70%) to the total catch. When the contribution of wild trout populations to the fisheries was evaluated regionally, geographically nearby populations were the main contributors to the local catches. MSA also revealed a clear separation between the lower and upper reaches of Ivalojoki river system – in contrast to lower reaches of the Ivalojoki river that contributed considerably to the catch, populations from the upper reaches of the Ivalojoki river system (>140 km from the river mouth) did not contribute significantly to the fishery. This could be related to the available habitat size but also associated with a resident type life history and increased cost of migration. The studies in my thesis highlight the importance of dense sampling and wide population coverage at the scale being studied and also demonstrate the importance of critical evaluation of the underlying assumptions of the population genetic models and methods used. These results have important implications for conservation and sustainable fisheries management of Finnish populations of European grayling and brown trout in the Inari basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although abundant in the number of individuals, the Atlantic salmon may be considered as a threatened species in many areas of its native distribution range. Human activities such as building of power plant dams, offshore overfishing, pollution, clearing of riverbeds for timber floating and badly designed stocking regimes have diminished the distribution of Atlantic salmon. As a result of this, many of the historical populations both in Europe and northern America have gone extinct or are severely depressed. In fact, only 1% of Atlantic salmon existing today are of natural origin, the rest being farmed salmon. All of this has lead to a vast amount of research and many restoration programmes aiming to bring Atlantic salmon back to rivers from where it has vanished. However, many of the restoration programmes conducted thus far have been unsuccessful due to inadequate scientific research or lack of its implementation, highlighting the fact that more research is needed to fully understand the biology of this complex species. The White and Barents Seas in northwest Russia are among the last regions in Europe where Atlantic salmon populations are still stable, thus forming an important source of biodiversity for the entire European region. Salmon stocks from this area are also of immense economic and social importance for the local people in the form of fishing tourism. The main aim of this thesis was to elucidate the post-glacial history and population genetic structure of north European and particularly northwest Russian Atlantic salmon, both of which are aspects of great importance for the management and conservation of the species. Throughout the whole thesis, these populations were studied by utilizing microsatellites as the main molecular tool. One of the most important discoveries of the thesis was the division of Atlantic salmon from the White and Barents Seas into four separate clusters, which has not been observed in previous studies employing nuclear markers although is supported by mtDNA studies. Populations from the western Barents Sea clustered together with the northeast Atlantic populations into a clearly distinguishable group while populations from the White Sea and eastern Barents Sea were separated into three additional groups. This has important conservation implications as this thesis clearly indicates that conservation of populations from all of the observed clusters is warranted in order to conserve as much of the genetic diversity as possible in this area. The thesis also demonstrates how differences in population life histories within a species, migratory behaviour in this case, and in their phylogeographic origin affect the genetic characteristics of populations, namely diversity and divergence levels. The anadromous populations from the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than the anadromous populations form the Baltic Sea basin. Among the non-anadromous populations the result was the opposite: the Baltic freshwater populations were more variable. This emphasises the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash and thus deserve a high conservation status. In the last chapter of this thesis immune relevant marker loci were developed and screened for signatures of natural selection along with loci linked to genes with other functions or no function at all. Also, a novel landscape genomics method, which combines environmental information with molecular data, was employed to investigate whether immune relevant markers displayed significant correlations to various environmental variables more frequently than other loci. Indications of stronger selection pressure among immune-relevant loci compared to non-immune relevant EST-linked loci was found but further studies are needed to evaluate whether it is a common phenomenon in Atlantic salmon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal birds are an integral part of coastal ecosystems, which nowadays are subject to severe environmental pressures. Effective measures for the management and conservation of seabirds and their habitats call for insight into their population processes and the factors affecting their distribution and abundance. Central to national and international management and conservation measures is the availability of accurate data and information on bird populations, as well as on environmental trends and on measures taken to solve environmental problems. In this thesis I address different aspects of the occurrence, abundance, population trends and breeding success of waterbirds breeding on the Finnish coast of the Baltic Sea, and discuss the implications of the results for seabird monitoring, management and conservation. In addition, I assess the position and prospects of coastal bird monitoring data, in the processing and dissemination of biodiversity data and information in accordance with the Convention on Biological Diversity (CBD) and other national and international commitments. I show that important factors for seabird habitat selection are island area and elevation, water depth, shore openness, and the composition of island cover habitats. Habitat preferences are species-specific, with certain similarities within species groups. The occurrence of the colonial Arctic Tern (Sterna paradisaea) is partly affected by different habitat characteristics than its abundance. Using long-term bird monitoring data, I show that eutrophication and winter severity have reduced the populations of several Finnish seabird species. A major demographic factor through which environmental changes influence bird populations is breeding success. Breeding success can function as a more rapid indicator of sublethal environmental impacts than population trends, particularly for long-lived and slowbreeding species, and should therefore be included in coastal bird monitoring schemes. Among my target species, local breeding success can be shown to affect the populations of the Mallard (Anas platyrhynchos), the Eider (Somateria mollissima) and the Goosander (Mergus merganser) after a time lag corresponding to their species-specific recruitment age. For some of the target species, the number of individuals in late summer can be used as an easier and more cost-effective indicator of breeding success than brood counts. My results highlight that the interpretation and application of habitat and population studies require solid background knowledge of the ecology of the target species. In addition, the special characteristics of coastal birds, their habitats, and coastal bird monitoring data have to be considered in the assessment of their distribution and population trends. According to the results, the relationships between the occurrence, abundance and population trends of coastal birds and environmental factors can be quantitatively assessed using multivariate modelling and model selection. Spatial data sets widely available in Finland can be utilised in the calculation of several variables that are relevant to the habitat selection of Finnish coastal species. Concerning some habitat characteristics field work is still required, due to a lack of remotely sensed data or the low resolution of readily available data in relation to the fine scale of the habitat patches in the archipelago. While long-term data sets exist for water quality and weather, the lack of data concerning for instance the food resources of birds hampers more detailed studies of environmental effects on bird populations. Intensive studies of coastal bird species in different archipelago areas should be encouraged. The provision and free delivery of high-quality coastal data concerning bird populations and their habitats would greatly increase the capability of ecological modelling, as well as the management and conservation of coastal environments and communities. International initiatives that promote open spatial data infrastructures and sharing are therefore highly regarded. To function effectively, international information networks, such as the biodiversity Clearing House Mechanism (CHM) under the CBD, need to be rooted at regional and local levels. Attention should also be paid to the processing of data for higher levels of the information hierarchy, so that data are synthesized and developed into high-quality knowledge applicable to management and conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vad händer i tidvattenzonen? Var går gränsen mellan land och hav, vad händer i tidvattenzonen och vem ansvarar för detta? I västra Indiska oceanen (VIO) kan avståndet mellan den lägsta nivån för lågvattnet och den högsta nivån för högvattnet vara flera kilometer och nivåskillnaderna upp till 6 meter och detta skapar ett stort och föränderligt område. Syftet med min avhandling är att öka förståelsen för tidvattenzonen i tropiska och subtropiska västra Indiska oceanen. Sammanfattningsvis visar mina studier att det finns ett mycket stort värde i den komplexa tidvattenzonen, men också att det här området hotas från både land och hav, genom t.ex. överexploatering, erosion och föroreningar. Uttnyttjandet av tidvattenzonen är stort och min avhandling har visat att aktiviteter såsom fiske i form av plocking av musslor och andra ryggradslösa djur och hamnaktiviteter påverkar den biologiska mångfalden negativt, vilket leder till försämrad levnadsstandard för resursutnyttjande människor i regionen. För att förbättra situationen krävs det mer forskning, miljöövervakning och bättre förvaltning av tidvattenzonen. Experter i regionen har rangordnat förslag på förvaltningsstrategier som skulle kunna testas för att förbättra miljön och skapa ett mer hållbart nyttjande. Avhandlingen visar även att det är möjligt att använda fjärranalysteknik såsom satellitbildsanalys för att kvantifiera mängden sjögräsvegetation (i form av biomassa), vilket kan ha stor betydelse för att förbättra storskalig miljöövervakning av kustnära naturtyper (habitat). I avhandlingsarbetet har jag använt mig av ett multidisciplinärt tillvägagångssätt och använt metoder såsom ekologisk och biologisk provtagning, intervjuer, observationer, diskussionsgrupper, frågeformulär och fjärranalys. Resultaten presenterade i denna avhandling ger en ökad kunskap om tidvattenzonen i utvecklingsländerna inom VIO-regionen som kan användas för att initiera och fortsätta att utveckla hållbara förvaltningsstrategier av biologiska resurser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Amazonian region, the biggest rain forest of our planet, is known for its extraordinary biodiversity. Most of this diversity is still unexplored and new species of different taxa are regularly found there. In this region, as in most areas of the world, insects are some of the most abundant organisms. Therefore, studying this group is important to promote the conservation of these highly biodiverse ecosystems of the planet. Among insects, parasitoid wasps are especially interesting because they have potential for use as biodiversity indicators and biological control agents in agriculture and forestry. The parasitoid wasp family Ichneumonidae is one of the most species rich groups among the kingdom Animalia. This group is still poorly known in many areas of the world; the Amazonian region is a clear example of this situation. Ichneumonids have been thought to be species poor in Amazonia and other tropical areas. However, recent studies are suggesting that parasitoid wasps may be quite abundant in Amazonia and possibly in most tropical areas of the world. The aim of my doctoral thesis is to study the species richness and taxonomy of two of the best known ichneumonid subfamilies in the Neotropical region, Pimplinae and Rhyssinae. To do this I conducted two extensive sampling programs in the Peruvian Amazonia. I examined also a large number of Neotropical ichneumonids deposited to different natural history museums. According to the results of my thesis, the species richness of these parasitoids in the Amazonian region is considerably higher than previously reported. In my research, I firstly further develop the taxonomy of these parasitoids by describing many new species and reporting several new faunistic records (I, II, III). In this first part I focus on two genera (Xanthopimpla and Epirhyssa) which were thought to be rather species poor. My thesis demonstrates that these groups are actually rather species rich in the Amazonian region. Secondly, I concentrate on the species richness of these parasitoids in a global comparison showing that the Neotropical region and especially the Peruvian Amazonia is one of the most species rich areas of Pimpliformes ichneumonids (V). Furthermore, I demonstrate that with the data available to date no clear latitudinal gradient in species richness is visible. Thirdly, increasing the macroecological knowledge of these parasitoids I show that some previously unreported ichneumonid subfamilies are present in the Amazonian region (IV). These new insights and the results of the global comparison of ichneumonid inventories suggest that the previous belief of low diversity in the tropics is most likely related to a lack of sampling effort in the region. Overall, my research increases the knowledge of Neotropical ichneumonids highlighting the importance of Peruvian Amazonia as one of the diversity hotspots of parasitoid wasps.