59 resultados para Computational prediction

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorylation is amongst the most crucial and well-studied post-translational modifications. It is involved in multiple cellular processes which makes phosphorylation prediction vital for understanding protein functions. However, wet-lab techniques are labour and time intensive. Thus, computational tools are required for efficiency. This project aims to provide a novel way to predict phosphorylation sites from protein sequences by adding flexibility and Sezerman Grouping amino acid similarity measure to previous methods, as discovering new protein sequences happens at a greater rate than determining protein structures. The predictor – NOPAY - relies on Support Vector Machines (SVMs) for classification. The features include amino acid encoding, amino acid grouping, predicted secondary structure, predicted protein disorder, predicted protein flexibility, solvent accessibility, hydrophobicity and volume. As a result, we have managed to improve phosphorylation prediction accuracy for Homo sapiens by 3% and 6.1% for Mus musculus. Sensitivity at 99% specificity was also increased by 6% for Homo sapiens and for Mus musculus by 5% on independent test sets. In this study, we have managed to increase phosphorylation prediction accuracy for Homo sapiens and Mus musculus. When there is enough data, future versions of the software may also be able to predict other organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Viljelymaiden savespitoisuuden alueellistaminen geostatistiikan ja pistemäisen tiedon avulla

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centrifugal compressors are widely used for example in process industry, oil and gas industry, in small gas turbines and turbochargers. In order to achieve lower consumption of energy and operation costs the efficiency of the compressor needs to be improve. In the present work different pinches and low solidity vaned diffusers were utilized in order to improve the efficiency of a medium size centrifugal compressor. In this study, pinch means the decrement of the diffuser flow passage height. First different geometries were analyzed using computational fluid dynamics. The flow solver Finflo was used to solve the flow field. Finflo is a Navier-Stokes solver. The solver is capable to solve compressible, incompressible, steady and unsteady flow fields. Chien's k-e turbulence model was used. One of the numerically investigated pinched diffuser and one low solidity vaned diffuser were studied experimentally. The overall performance of the compressor and the static pressure distribution before and after the diffuser were measured. The flow entering and leaving the diffuser was measured using a three-hole Cobra-probe and Kiel-probes. The pinch and the low solidity vaned diffuser increased the efficiency of the compressor. Highest isentropic efficiency increment obtained was 3\% of the design isentropic efficiency of the original geometry. It was noticed in the numerical results that the pinch made to the hub and the shroud wall was most beneficial to the operation of the compressor. Also the pinch made to the hub was better than the pinchmade to the shroud. The pinch did not affect the operation range of the compressor, but the low solidity vaned diffuser slightly decreased the operation range.The unsteady phenomena in the vaneless diffuser were studied experimentally andnumerically. The unsteady static pressure was measured at the diffuser inlet and outlet, and time-accurate numerical simulation was conducted. The unsteady static pressure showed that most of the pressure variations lay at the passing frequency of every second blade. The pressure variations did not vanish in the diffuser and were visible at the diffuser outlet. However, the amplitude of the pressure variations decreased in the diffuser. The time-accurate calculations showed quite a good agreement with the measured data. Agreement was very good at the design operation point, even though the computational grid was not dense enough inthe volute and in the exit cone. The time-accurate calculation over-predicted the amplitude of the pressure variations at high flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diplomityön tavoitteena oli tarkastella numeerisen virtauslaskennan avulla virtaukseen liittyviä ilmiöitä ja kaasun dispersiota. Diplomityön sisältö on jaettu viiteen osaan; johdantoon, teoriaan, katsaukseen virtauksen mallinnukseen huokoisessa materiaalissa liittyviin tutkimusselvityksiin, numeeriseen mallinnukseen sekä tulosten esittämiseen ja johtopäätöksiin. Diplomityön alussa kiinnitettiin huomiota erilaisiin kokeellisiin, numeerisiin ja teoreettisiin mallinnusmenetelmiin, joilla voidaan mallintaa virtausta huokoisessa materiaalissa. Kirjallisuusosassa tehtiin katsaus aikaisemmin julkaistuihin puoliempiirisiin ja empiirisiin tutkimusselvityksiin, jotka liittyvät huokoisen materiaalin aiheuttamaan painehäviöön. Numeerisessa virtauslaskenta osassa rakennettiin ja esitettiin huokoista materiaalia kuvaavat numeeriset mallit käyttäen kaupallista FLUENT -ohjelmistoa. Työn lopussa arvioitiin teorian, numeerisen virtauslaskennan ja kokeellisten tutkimusselvitysten tuloksia. Kolmiulotteisen huokoisen materiaalinnumeerisessa mallinnuksesta saadut tulokset vaikuttivat lupaavilta. Näiden tulosten perusteella tehtiin suosituksia ajatellen tulevaa virtauksen mallinnusta huokoisessa materiaalissa. Osa tässä diplomityössä esitetyistä tuloksista tullaan esittämään 55. Kanadan Kemiantekniikan konferenssissa Torontossa 1619 Lokakuussa 2005. ASME :n kansainvälisessä tekniikan alan julkaisussa. Työ on hyväksytty esitettäväksi esitettäväksi laskennallisen virtausmekaniikan (CFD) aihealueessa 'Peruskäsitteet'. Lisäksi työn yksityiskohtaiset tulokset tullaan lähettämään myös CES:n julkaisuun.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In bubbly flow simulations, bubble size distribution is an important factor in determination of hydrodynamics. Beside hydrodynamics, it is crucial in the prediction of interfacial area available for mass transfer and in the prediction of reaction rate in gas-liquid reactors such as bubble columns. Solution of population balance equations is a method which can help to model the size distribution by considering continuous bubble coalescence and breakage. Therefore, in Computational Fluid Dynamic simulations it is necessary to couple CFD and Population Balance Model (CFD-PBM) to get reliable distribution. In the current work a CFD-PBM coupled model is implemented as FORTRAN subroutines in ANSYS CFX 10 and it has been tested for bubbly flow. This model uses the idea of Multi Phase Multi Size Group approach which was previously presented by Sha et al. (2006) [18]. The current CFD-PBM coupled method considers inhomogeneous flow field for different bubble size groups in the Eulerian multi-dispersed phase systems. Considering different velocity field for bubbles can give the advantageof more accurate solution of hydrodynamics. It is also an improved method for prediction of bubble size distribution in multiphase flow compared to available commercial packages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical weather prediction and climate simulation have been among the computationally most demanding applications of high performance computing eversince they were started in the 1950's. Since the 1980's, the most powerful computers have featured an ever larger number of processors. By the early 2000's, this number is often several thousand. An operational weather model must use all these processors in a highly coordinated fashion. The critical resource in running such models is not computation, but the amount of necessary communication between the processors. The communication capacity of parallel computers often fallsfar short of their computational power. The articles in this thesis cover fourteen years of research into how to harness thousands of processors on a single weather forecast or climate simulation, so that the application can benefit as much as possible from the power of parallel high performance computers. The resultsattained in these articles have already been widely applied, so that currently most of the organizations that carry out global weather forecasting or climate simulation anywhere in the world use methods introduced in them. Some further studies extend parallelization opportunities into other parts of the weather forecasting environment, in particular to data assimilation of satellite observations.