8 resultados para Compressive loading

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rectangular hollow section (RHS) members are components widely used in engineering applications because of their good-looking, good properties in engineering areas and inexpensive cost comparing to members with other sections. The increasing use of RHS in load bearing structures makes it necessary to analyze the fatigue behavior of the RHS members. In this thesis, concentration will be given to the fatigue behavior of the RHS members under variable amplitude pure torsional loading. For the RHS members, failure will normally occur in the corner region if the welded regions are under full penetration. This is because of the complicated stress components' distributions at the RHScorners, where all of three fracture mechanics modes will happen. Mode I is mainly caused by the residual stresses that caused by the manufacturing process. Modes II and III are caused by the applied torsional loading. Stress based Findleymodel is also used to analyze the stress components. Constant amplitude fatigue tests have been done as well as variable amplitude fatigue tests. The specimens under variable amplitude loading gave longer fatigue lives than those under constant amplitude loading. Results from tests show an S-N curvewith slope around 5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hitsattujen rakenteiden väsymiskestävyyttä pystytään parantamaan jälkikäsittelymenetelmillä, joistayksi, ultraäänikäsittely muokkaa hitsin geometriaa ja aiheuttaa puristusjäännösjännitystilan. Tässä tutkimuksessa verrataan kokeellisesti kuormaa kantamattoman hitsatun ja ui -käsitellyn rivan väsymislujuutta toisiinsa. Tutkimusohjelmaan kuuluu kahta teräslajia ja sekä vakio - että vaihtuva - amplitudista kuormitusta. Ultraäänikäsittelyllä saavutetaan väsymiskestoiän parantuminen vakio - ja vaihtuva - amplitudisella kuormituksella. Perusaineen lujuudella ei ole merkittää vaikutusta väsymislujuuteen kun liitos on hitsatussa tilassa. Tällöin väsymiskestävyyden määrää hitsin rajaviivan jännityskeskittymä. Ultraäänikäsitellyn hitsatunliitoksen väsymiskestävyys on suurempi korkeamman lujuuden omaavilla teräksillä. Tästä syystä korkealujuuksisten terästen käyttö ultraäänikäsiteltynä väsyttävästi kuormitetuissa kevytrakenteissa on perusteltua.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly observed that complex fabricated structures subject tofatigue loading fail at the welded joints. Some problems can be corrected by proper detail design but fatigue performance can also be improved using post-weld improvement methods. In general, improvement methods can be divided into two main groups: weld geometry modification methods and residual stress modification methods. The former remove weld toe defects and/or reduce the stress concentrationwhile the latter introduce compressive stress fields in the area where fatigue cracks are likely to initiate. Ultrasonic impact treatment (UIT) is a novel post-weld treatment method that influences both the residual stress distribution andimproves the local geometry of the weld. The structural fatigue strength of non-load carrying attachments in the as-welded condition has been experimentally compared to the structural fatigue strength of ultrasonic impact treated welds. Longitudinal attachment specimens made of two thicknesses of steel S355 J0 have been tested for determining the efficiency of ultrasonic impacttreatment. Treated welds were found to have about 50% greater structural fatigue strength, when the slope of the S-N-curve is three. High mean stress fatigue testing based on the Ohta-method decreased the degree of weld improvement only 19%. This indicated that the method could be also applied for large fabricated structures operating under high reactive residual stresses equilibrated within the volume of the structure. The thickness of specimens has no significant effect tothe structural fatigue strength. The fatigue class difference between 5 mm and 8 mm specimen was only 8%. It was hypothesized that the UIT method added a significant crack initiation period to the total fatigue life of the welded joints. Crack initiation life was estimated by a local strain approach. Material parameters were defined using a modified Uniform Material Law developed in Germany. Finite element analysis and X-ray diffraction were used to define, respectively, the stress concentration and mean stress. The theoretical fatigue life was found to have good accuracy comparing to experimental fatigue tests.The predictive behaviour of the local strain approach combined with the uniformmaterial law was excellent for the joint types and conditions studied in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työssä on tutkittu kylmämuovatun suorakaideputkipalkin väsymistä metsätyökoneen puomirakenteen osana. Kylmämuovatun putkipalkin sisäpintaan syntyy käytössä puristavan ulkoisen kuormituksen vaikutuksesta putkipalkin pituussuunnassa sekä seinämän läpi kasvavia säröjä. Työn tarkoituksena on ollut selvittää rakenteen väsymiskestoikä sekä säröytymisen aiheuttavat tekijät. Työssä on verrattu kestoikälaskentaan ja särönkasvuun sovellettujen murtumismekaniikan ja elementtimenetelmän tuloksia laboratoriokokeista saatuihin tuloksiin. Toisiaan tukevien tulosten perusteella kylmämuovausprosessissa syntyneiden jäännösjännitysten osuus särön ydintymisessä, kasvussa ja sen käyttäytymisessä on ulkoisen kuorman paikallisen vaikutuksen lisänä erittäin merkittävä. Putkipalkin väsyminen onkin jäännösjännityksistä riippuva särönkasvuilmiö.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous silicon (PSi) is a promising material to be utilized in drug delivery formulations. The release rate of the drug compound can be controlled by changing the pore properties and surface chemistry of PSi. The loading of a poorly soluble drug into mesoporous silicon particles enhances its dissolution in the body. The drug loading is based on adsorption. The attainable maximum loaded amount depends on the properties of the drug compound and the PSi material, and on the process conditions. The loading solvent also essentially affects the adsorption process. The loading of indomethacin into PSi particles with varying surface modification was studied. Solvent mixtures were applied in the loading, and the loaded samples were analyzed with thermal analysis methods. The best degree of loading was obtained using a mixture of dichloromethane and methanol. The drug loads varied from 7.7 w-% to 26.8 w-%. A disturbing factor in the loading experiments was the tendency of indomethacin to form solvates with the solvents applied. In addition, the physical form and stability of indomethacin loaded in PSi and silica particles were studied using Raman spectroscopy. In the case of silica, the presence of crystalline drug as well as the polymorph form can be detected, but the method proved to be not applicable for PSi particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Welding has a growing role in modern world manufacturing. Welding joints are extensively used from pipes to aerospace industries. Prediction of welding residual stresses and distortions is necessary for accurate evaluation of fillet welds in relation to design and safety conditions. Residual stresses may be beneficial or detrimental, depending whether they are tensile or compressive and the loading. They directly affect the fatigue life of the weld by impacting crack growth rate. Beside theoretical background of residual stresses this study calculates residual stresses and deformations due to localized heating by welding process and subsequent rapid cooling in fillet welds. Validated methods are required for this purpose due to complexity of process, localized heating, temperature dependence of material properties and heat source. In this research both empirical and simulation methods were used for the analysis of welded joints. Finite element simulation has become a popular tool of prediction of welding residual stresses and distortion. Three different cases with and without preload have been modeled during this study. Thermal heat load set is used by calculating heat flux from the given heat input energy. First the linear and then nonlinear material behavior model is modeled for calculation of residual stresses. Experimental work is done to calculate the stresses empirically. The results from both the methods are compared to check their reliability. Residual stresses can have a significant effect on fatigue performance of the welded joints made of high strength steel. Both initial residual stress state and subsequent residual stress relaxation need to be considered for accurate description of fatigue behavior. Tensile residual stresses are detrimental and will reduce the fatigue life and compressive residual stresses will increase it. The residual stresses follow the yield strength of base or filler material and the components made of high strength steel are typically thin, where the role of distortion is emphasizing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of the thesis was to gain understanding of organizational buying behavior and its effect from the selling perspective and to generate base for verifying customer value propositions for Actiw Oy. The first objective was to discover the current buying decision criteria of current customers to understand the buying motives which had led to the investment initially. Second objective was to understand how the buying decision criteria and customer experiences can be turned into customer value propositions. Research was done with 16 customer interviews, which were focused on obtaining the information on the buying center and the value of the solution. Thesis goes through the main theories of OBB and the theory behind customer value management. Based on customer interviews, the currently used customer value propositions were tested and categorized into points-of-parities and points-ofdifferences. The interviews confirmed customer behavior in new task and modified rebuy situations and also gave confirmation to the internally done customer value propositions. Main finding of the study was, that as the value propositions are possible to present more specifically to each new case instead of using all benefits at the same time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, finite element analyses and experimental tests are carried out in order to investigate the effect of loading type and symmetry on the fatigue strength of three different non-load carrying welded joints. The current codes and recommendations do not give explicit instructions how to consider degree of bending in loading and the effect of symmetry in the fatigue assessment of welded joints. The fatigue assessment is done by using effective notch stress method and linear elastic fracture mechanics. Transverse attachment and cover plate joints are analyzed by using 2D plane strain element models in FEMAP/NxNastran and Franc2D software and longitudinal gusset case is analyzed by using solid element models in Abaqus and Abaqus/XFEM software. By means of the evaluated effective notch stress range and stress intensity factor range, the nominal fatigue strength is assessed. Experimental tests consist of the fatigue tests of transverse attachment joints with total amount of 12 specimens. In the tests, the effect of both loading type and symmetry on the fatigue strength is studied. Finite element analyses showed that the fatigue strength of asymmetric joint is higher in tensile loading and the fatigue strength of symmetric joint is higher in bending loading in terms of nominal and hot spot stress methods. Linear elastic fracture mechanics indicated that bending reduces stress intensity factors when the crack size is relatively large since the normal stress decreases at the crack tip due to the stress gradient. Under tensile loading, experimental tests corresponded with finite element analyzes. Still, the fatigue tested joints subjected to bending showed the bending increased the fatigue strength of non-load carrying welded joints and the fatigue test results did not fully agree with the fatigue assessment. According to the results, it can be concluded that in tensile loading, the symmetry of joint distinctly affects on the fatigue strength. The fatigue life assessment of bending loaded joints is challenging since it depends on whether the crack initiation or propagation is predominant.