2 resultados para Complementary Palindrome
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Being a top of high technology industries, the aerospace represents one of the most complex fields of study. While the competitiveness of aircraft systems’ manufacturers attracts a significant number of researchers, some of the issues remain to be a blank spot. One of those is the after-sale modernization. The master thesis investigates how this concept is related to the theory of competitive advantages. Finding the routes in the framework of complex technological systems’ lifecycle, the key drivers of the aircraft modernization market are revealed. The competitive positioning of players is defined through multiple case studies in a form of several in-depth interviews. The key result of the research is the conclusion that modernization should be considered as an inherent component of strategy of any aircraft systems’ manufacturer, while the master thesis aims to support managerial decision making.
Resumo:
A quadcopter is a helicopter with four rotors, which is mechanically simple device, but requires complex electrical control for each motor. Control system needs accurate information about quadcopter’s attitude in order to achieve stable flight. The goal of this bachelor’s thesis was to research how this information could be obtained. Literature review revealed that most of the quadcopters, whose source-code is available, use a complementary filter or some derivative of it to fuse data from a gyroscope, an accelerometer and often also a magnetometer. These sensors combined are called an Inertial Measurement Unit. This thesis focuses on calculating angles from each sensor’s data and fusing these with a complementary filter. On the basis of literature review and measurements using a quadcopter, the proposed filter provides sufficiently accurate attitude data for flight control system. However, a simple complementary filter has one significant drawback – it works reliably only when the quadcopter is hovering or moving at a constant speed. The reason is that an accelerometer can’t be used to measure angles accurately if linear acceleration is present. This problem can be fixed using some derivative of a complementary filter like an adaptive complementary filter or a Kalman filter, which are not covered in this thesis.