13 resultados para Colonic aberrant crypt foci
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Dietary and microbial factors are thought to contribute to the rapidly increasing prevalence of T1D in many countries worldwide. The impact of these factors on immune regulation and diabetes development in non-obese diabetic (NOD) mice are investigated in this thesis. Diabetes can be prevented in NOD mice through dietary manipulation. Diet affects the composition of intestinal microbiota, which may subsequently influence intestinal immune homeostasis. However, the specific effects of anti-diabetogenic diets on gut immunity and the explicit associations between intestinal immune disruption and type 1 diabetes onset remain unclear. The research presented herein demonstrates that newly weaned NOD mice suffer from a mild level of colitis, which shifts the colonic immune cell balance towards a proinflammatory status. Several aberrations can also be observed in the peritoneal B cells of NOD mice; an increase in activation marker expression, increased trafficking to the pancreatic lymph nodes and significantly higher antigen presenting cell (APC) efficiency towards insulin-specific T cells. A shift towards inflammation is likewise observed in the colon of germ-free NOD mice, but signs of peritoneal B cell activation are lacking in these mice. Remarkably, most of the abnormalities in the colon, peritoneal macrophages and the peritoneal B cell APC activity of NOD mice are abrogated when NOD mice are maintained on a diabetes-preventive, soy-based diet (ProSobee) from the time of weaning. Dietary and microbial factors hence have a significant impact on colonic immune regulation and peritoneal B cell activation and it is suggested that these factors influence diabetes development in NOD mice.
Resumo:
Intermediate filament keratins (K) play a pivotal role in protein targeting and epithelialcytoprotection from stress as evidenced by keratin mutations predisposing to human liver and skin diseases and possibly inflammatory bowel disease (IBD). The K8-null (K8-/-) mice exhibit colonic phenotype similar to IBD and marked spontaneous colitis, epithelial hyperproliferation, decreased apoptosis, mistargeting of proteins leading to defective ion transport and diarrhea. The K8-heterozygote (K8+/-) mouse colon appears normal but displays a defective sodium (Na+) and chloride (Cl-) transport similar to, but milder than K8-/-. Characterization of K8+/- colon revealed ~50% less keratins (K7, K8, K19, K20) compared to K8 wild type (K8+/+). A similar ~50% decrease was seen in K8+/- mRNA levels as compared to K8+/+, while the mRNA levels for the other keratins were unaltered. K8+/- keratins were arranged in a normal colonic crypt expression pattern, except K7 which was expressed at the top of crypts in contrast to K8+/+. The K8+/- colon showed mild hyperplasia but no signs of inflammation and no resistance to apoptosis. Experimental colitis induced by using different concentrations of dextran sulphate sodium (DSS) showed that K8+/- mice are slightly more sensitive to induced colitis and showed a delayed recovery compared to K8+/+. Hence, the K8+/- mouse with less keratins and without inflammation, provided a novel model to study direct molecular mechanisms of keratins in intestinal homeostasis and ion transport. Different candidate ion transporters for a possible role in altered ion transport seen in the K8-/- and K8+/- mouse colon were evaluated. Besides normal levels of CFTR, PAT-1 and NHE-3, DRA mRNA levels were decreased 3-4-fold and DRA protein nearly entirely lost in K8-/- caecum, distal and proximal colon compared to K8+/+. In K8+/- mice, DRA mRNA levels were unaltered while decreased DRA protein level and patchy distribution was detected particularly in the proximal colon and as compared to K8+/+. DRA was similarly decreased when K8 was knocked-down in Caco-2 cells, confirming that K8 levels modulate DRA levels in an inflammation-independent manner. The dramatic loss of DRA in colon and caecum of K8-/- mice was responsible for the chloride transport defect. The milder ion transport in K8+/- colon might be related to DRA suggesting a role for K8 in regulation of DRA expression and targeting. The current study demonstrates the importance of keratins in stress protection and cell signaling. Furthermore, we have also successfully developed a novel, simple, fast, cost effective, non-invasive in vivo imaging method for the early diagnosis of murine colitis with specificity for both genetic and experimental colitis. The said modality provides continuous measurements of reactive oxygen and nitrogen species (RONS) and minimizes the use of an increased number of experimental animals by using a luminal derivative chemiluminescent probe, L-012 which provides a cost-effective tool to study the level and longitudinal progression of colitis.
Resumo:
Summary: The diagnostics of Serpulina bacteria and a review on Finnish swine colonic spirochaetes isolated during 1993-1995
Resumo:
Colonic Spirochaetal infections in animals and humans -tutkimusalan tilannekatsaus Ekenäs'issä Ruotsissa 2.-3.4.2000
Resumo:
Työssä kehitettin läpinäkyvä Internet Small Computer Systems Interface-verkkolevyä (iSCSI) käyttävä varmistusjärjestelmä. Verkkolevyn sisältö suojattiin asiakaspään salauskerroksella (dm-crypt). Järjestely mahdollisti sen, että verkkolevylle tallennetut varmuuskopiot pysyivät luottamuksellisina, vaikka levypalvelinta tarjoava taho oli joko epäluotettava tai suorastaan vihamielinen. Järjestelmän hyötykäyttöä varten kehitettiin helppokäyttöinen prototyyppisovellus. Järjestelmän riskit ja haavoittuvuudet käytiin läpi ja analysoitiin. Järjestelmälle tehtiin myös karkea kryptoanalyysi sen teknistenominaisuuksien pohjalta. Suorituskykymittaukset tehtiin sekä salatulle että salaamattomalle iSCSI-liikenteelle. Näistä todettiin, että salauksen vaikutus suorituskykyyn oli häviävän pieni jopa 100 megabittiä sekunnissa siirtävillä verkkonopeuksilla. Lisäksi pohdittiin teknologian muita sovelluskohteita ja tulevia tutkimusalueita.
Resumo:
Currently, numerous high-throughput technologies are available for the study of human carcinomas. In literature, many variations of these techniques have been described. The common denominator for these methodologies is the high amount of data obtained in a single experiment, in a short time period, and at a fairly low cost. However, these methods have also been described with several problems and limitations. The purpose of this study was to test the applicability of two selected high-throughput methods, cDNA and tissue microarrays (TMA), in cancer research. Two common human malignancies, breast and colorectal cancer, were used as examples. This thesis aims to present some practical considerations that need to be addressed when applying these techniques. cDNA microarrays were applied to screen aberrant gene expression in breast and colon cancers. Immunohistochemistry was used to validate the results and to evaluate the association of selected novel tumour markers with the outcome of the patients. The type of histological material used in immunohistochemistry was evaluated especially considering the applicability of whole tissue sections and different types of TMAs. Special attention was put on the methodological details in the cDNA microarray and TMA experiments. In conclusion, many potential tumour markers were identified in the cDNA microarray analyses. Immunohistochemistry could be applied to validate the observed gene expression changes of selected markers and to associate their expression change with patient outcome. In the current experiments, both TMAs and whole tissue sections could be used for this purpose. This study showed for the first time that securin and p120 catenin protein expression predict breast cancer outcome and the immunopositivity of carbonic anhydrase IX associates with the outcome of rectal cancer. The predictive value of these proteins was statistically evident also in multivariate analyses with up to a 13.1- fold risk for cancer specific death in a specific subgroup of patients.
Resumo:
Researching research is not a common theme in educational drama. Nor is the educational drama process from a participant perspective a typical focus of research, at least not if the participants are disabled. Yet this is the theme of this thesis, a drama in three acts. The aim of this thesis is to describe, analyse, and discuss both the ways in which research within educational drama can be carried out and represented, and the experiences of the participants of the educational drama process. The theoretical framework that steers the research process is built up of two pairs of frames, each of them, like Russian nesting dolls, containing further frames. The first frame, relating to the outcomes of conducting research in educational drama, comprises philosophical, representational, and personal theories. As the second question asks what educational drama is, the subject related frame is built up of pedagogical, drama educational, and aesthetic theories. The study in its entirety follows the structure of the researcher’s hermeneutical learning process and takes the form of a journey starting from what is familiar, stretching towards what is new and different, and finally returning back to the beginning with a new view on what was there at the start. The thesis consists of two separate but related studies. The first, a familiar study conducted earlier, Alpha in Act I, was carried out among upper secondary school pupils. In the second, the new and therefore unfamiliar study, Omega in Act III, the participants are adult individuals who are physically and communicatively disabled. In between these two Acts an element of “Verfremdung” where the Alpha study is systematically scrutinized as the purpose is to teach and to manage the reader to think. Meta-discussions on the philosophical issues of the study are conducted throughout the text, parallel to the empirical parts. The outcomes of the first research question show that philosophical, methodical, and representational consistency is crucial for research. While this may sound like stating the obvious, this has nevertheless not always been considered fact, especially not within qualitative research. The outcomes further stress that representational issues are also to be recognized when presenting non-rational aspects of educational drama. By wording the world, through the use of visualising language, the surplus of meanings of educational drama can be, as they are within this study, made visible, sensible, and almost tangible, not only cognitively understandable. The outcomes of the second question point to the different foci of the studies, with Alpha focusing on the rationally retold experiences and Omega focusing on nonrational experiences. The outcomes expose educational drama as a learning process comprising doing, reflecting, and being. The doing aspect communicates the concrete efforts in creating a piece of theatre, while the being aspect relates experiences of being as situated, embodied and sensuous, reciprocal, empowering, aesthetic and artistic, and existential. Reflection is the twine that runs throughout the process and connects both doing and being. In summary, the outcomes could be formulated as “learning from learning how to make theatre”.
Resumo:
The growth of breast cancer is regulated by hormones and growth factors. Recently, aberrant fibroblast growth factor (FGF) signalling has been strongly implicated in promoting the progression of breast cancer and is thought to have a role in the development of endocrine resistant disease. FGFs mediate their auto- and paracrine signals through binding to FGF receptors 1-4 (FGFR1-4) and their isoforms. Specific targets of FGFs in breast cancer cells and the differential role of FGFRs, however, are poorly described. FGF-8 is expressed at elevated levels in breast cancer, and it has been shown to act as an angiogenic, growth promoting factor in experimental models of breast cancer. Furthermore, it plays an important role in mediating androgen effects in prostate cancer and in some breast cancer cell lines. We aimed to study testosterone (Te) and FGF-8 regulated genes in Shionogi 115 (S115) breast cancer cells, characterise FGF-8 activated intracellular signalling pathways and clarify the role of FGFR1, -2 and -3 in these cells. Thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis, was recognised as a Te and FGF-8 regulated gene. Te repression of TSP-1 was androgen receptor (AR)-dependent. It required de novo protein synthesis, but it was independent of FGF-8 expression. FGF-8, in turn, downregulated TSP-1 transcription by activating the ERK and PI3K pathways, and the effect could be reversed by specific kinase inhibitors. Differential FGFR1-3 action was studied by silencing each receptor by shRNA expression in S115 cells. FGFR1 expression was a prerequisite for the growth of S115 tumours, whereas FGFR2 expression alone was not able to promote tumour growth. High FGFR1 expression led to a growth advantage that was associated with strong ERK activation, increased angiogenesis and reduced apoptosis, and all of these effects could be reversed by an FGFR inhibitor. Taken together, the results of this thesis show that FGF-8 and FGFRs contribute strongly to the regulation of the growth and angiogenesis of experimental breast cancer and support the evidence for FGF-FGFR signalling as one of the major players in breast cancers.
Resumo:
The endogenous microbiota, constituting the microbes that live inside and on humans, is estimated to outnumber human cells by a factor of ten. This commensal microbial population has an important role in many physiological functions, with the densest microbiota population found in the colon. The colonic microbiota is a highly complex and diverse bacterial ecosystem, and a delicate balance exists between the gut microbiota and its host. An imbalance in the microbial ecosystem may lead to severe symptoms in and also beyond the gastrointestinal tract. Due to the important role of the gut microbiota in human health, means of its modification have been introduced in the dietary concepts of pro-, pre- and synbiotics. Prebiotics, which are usually carbohydrates, strive to selectively influence beneficial microbes resident in the colon with the aim of modifying the composition and functionality of the commensal microbial population towards a purportedly healthier one. The study of prebiotic effects on colonic micro-organisms is typically done by using human faecal material, though this provides relatively little information on bacterial populations and metabolic events in different parts of the colon. For this reason, several in vitro models have been developed to investigate the gut microbiota. The aim of this doctoral thesis was to screen through some of the promising prebiotic candidates, characterize their effects on the microbiota through the use of two in vitro methods (pure microbial cultures and a colon simulator model) and to evaluate their potential as emerging prebiotics or synbiotics when combined with the probiotic Bifidobacterium lactis . As a result of the screening work and subsequent colon simulation studies, several compounds with promising features were identified. Xylo-oligosaccharides (XOS), which have previously already shown promise as prebiotic compounds, were well fermented by several probiotic Bifidobacterium lactis strains in pure culture studies and in the following simulation studies utilizing the complex microbiota by endogenous B. lactis Another promising compound was panose, a trisaccharide belonging to isomalto-oligosaccharides (IMO) that also was also able to modify the microbiota in vitro by increasing the number of beneficial microbes investigated. Panose has not been widely studied previously and therefore, this thesis work provided the first data on panose fermentation in mixed colonic microbiota. Galacto-oligosaccharide (GOS) is an established prebiotic, and it was studied here in conjunction with another potential polygosaccharide polydextrose (PDX) and probiotic B. lactis Bi-07. In this final study, the synbiotics including GOS were more effective than the constituting pro- or prebiotics alone in modulating the microbiota composition, thus indicating a synergy resulting from the combination. The results obtained in this in vitro work can be, and have already been, utilized in product development aimed at the nutritional modification of the human colonic microbiota. Some of the compounds have entered the human clinical intervention phase to nvestigate in more detail the prebiotic and synbiotic properties seen in these in vitro studies.
Resumo:
The integrin family of transmembrane receptors are important for cell-matrix adhesion and signal transmission to the interior of the cell. Integrins are essential for many physiological processes and defective integrin function can consequently result in a multitude of diseases, including cancer. Integrin traffic is needed for completion of cytokinesis and cell division failure has been proposed to be an early event in the formation of chromosomally aberrant and transformed cells. Impaired integrin traffic and changes in integrin expression are known to promote invasion of malignant cells. However, the direct roles of impaired integrin traffic in tumorigenesis and increased integrin expression in oncogene driven invasion have not been examined. In this study we have investigated both of these aspects. We found that cells with reduced integrin endocytosis become binucleate and subsequently aneuploid. These aneuploid cells display characteristics of transformed cells; they are anchorage-independent, resistant to apoptosis and invasive in vitro. Importantly, subcutaneous injection of the aneuploid cells into athymic nude mice produced highly malignant tumors. Through gene expression profiling and analysis of integrin-triggered signaling pathways we have identified several molecules involved in the malignancy of these cells, including Src kinase and the transcription factor Twist2. Thus, even though chromosomal aberrations are associated with reduced cell fitness, we show that aneuploidy can facilitate tumor evolution and selection of transformed cells. Invasion and metastasis are the primary reason for deaths caused by cancer and the molecular pathways responsible for invasion are therefore attractive targets in cancer therapy. In addition to integrins, another major family of adhesion receptors are the proteoglycans syndecans. Integrins and syndecans are known to signal in a synergistic manner in controlling cell adhesion on 2D matrixes. Here we explored the role of syndecans as α2β1 integrin co-receptors in 3D collagen. We show that in breast cancer cells harbouring mutant K-Ras, increased levels of integrins, their co-receptors syndecans and matrix cleaving proteases are necessary for the invasive phenotype of these cells. Together, these findings increase our knowledge of the complicated changes that occur during tumorigenesis and the pathways that control the ability of cancer cells to invade and metastasize.
Resumo:
Background: Maternal diabetes affects many fetal organ systems, including the vasculature and the lungs. The offspring of diabetic mothers have respiratory adaptation problems after birth. The mechanisms are multifactorial and the effects are prolonged during the postnatal period. An increasing incidence of diabetic pregnancies accentuates the importance of identifying the pathological mechanisms, which cause the metabolic and genetic changes that occur in offspring, born to diabetic mothers. Aims and methods: The aim of this thesis was to determine changes both in human umbilical cord exposed to maternal type 1 diabetes and in neonatal rat lungs after streptozotocin-induced maternal hyperglycemia, during pregnancy. Rat lungs were used as a model for the potential disease mechanisms. Gene expression alterations were determined in human umbilical cords at birth and in rat pup lungs at two week of age. During the first two postnatal weeks, rat lung development was studied morphologically and histologically. Further, the effect of postnatal hyperoxia on hyperglycemia-primed rat lungs was investigated at one week of age to mimic the clinical situation of supplemental oxygen treatment. Results: In the umbilical cord, maternal diabetes had a major negative effect on the expression of genes involved in blood vessel development. The genes regulating vascular tone were also affected. In neonatal rat lungs, intrauterine hyperglycemia had a prolonged effect on gene expression during late alveolarization. The most affected pathway was the upregulation of extracellular matrix proteins. Newborn rat lungs exposed to intrauterine hyperglycemia had thinner saccular walls without changes in airspace size, a smaller relative lung weight and lung total tissue area, and increased cellular apoptosis and proliferation compared to control lungs, possibly reflecting an aberrant maturational adaptation. At one and two weeks of age, cell proliferation and secondary crest formation were accelerated in hyperglycemia-exposed lungs. Postnatal hyperoxic exposure, alone caused arrested alveolarization with thin-walled and enlarged alveoli. In contrast, the dual exposure of intrauterine hyperglycemia and postnatal hyperoxia resulted in the phenotype of thick septa together with arrested alveolarization and decreased number of small pulmonary arteries. Conclusions: Maternal diabetic environment seems to alter the umbilical cord gene expression profile of the regulation of vascular development and function. Fetal hyperglycemia may additionally affect the genetic regulation of the postnatal lung development and may actually induce prolonged structural alterations in neonatal lungs together with a modifying effect on the deleterious pulmonary exposure of postnatal hyperoxia. This, combined with the novel human umbilical cord gene data could serve as stepping stones for future therapies to curb developmental aberrations.
Resumo:
The human immune system is constantly interacting with the surrounding stimuli and microorganisms. However, when directed against self or harmless antigens, these vital defense mechanisms can cause great damage. In addition, the understanding the underlying mechanism of several human diseases caused by aberrant immune cell functions, for instance type 1 diabetes and allergies, remains far from being complete. In this Ph.D. study these questions were addressed using genome-wide transcriptomic analyses. Asthma and allergies are characterized by a hyperactive response of the T helper 2 (Th2) immune cells. In this study, the target genes of the STAT6 transcription factor in naïve human T cells were identified with RNAi for the first time. STAT6 was shown to act as a central activator of the genes expression upon IL-4 signaling, with both direct and indirect effects on Th2 cell transcriptome. The core transcription factor network induced by IL-4 was identified from a kinetic analysis of the transcriptome. Type 1 diabetes is an autoimmune disease influenced by both the genetic susceptibility of an individual and the disease-triggering environmental factors. To improve understanding of the autoimmune processes driving pathogenesis in the prediabetic phase in humans, a unique series of prospective whole-blood RNA samples collected from HLA-susceptible children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study was studied. Changes in different timewindows of the pathogenesis process were identified, and especially the type 1 interferon response was activated early and throughout the preclinical T1D. The hygiene hypothesis states that allergic diseases, and lately also autoimmune diseases, could be prevented by infections and other microbial contacts acquired in early childhood, or even prenatally. To study the effects of the standard of hygiene on the development of neonatal immune system, cord blood samples from children born in Finland (high standard of living), Estonia (rapid economic growth) and Russian Karelia (low standard of living) were compared. Children born in Russian Karelia deviated from Finnish and Estonian children in many aspects of the neonatal immune system, which was developmentally more mature in Karelia, resembling that of older infants. The results of this thesis offer significant new information on the regulatory networks associated with immune-mediated diseases in human. The results will facilitate understanding and further research on the role of the identified target genes and mechanisms driving the allergic inflammation and type 1 diabetes, hopefully leading to a new era of drug development.
Resumo:
ErbB receptor tyrosine kinases, epidermal growth factor receptor (EGFR, also known as ErbB1), ErbB2 (HER2 or NEU), ErbB3 (HER3), and ErbB4 (HER4), transduce signals borne by extracellular ligands into central cellular responses such as proliferation, survival, differentiation, and apoptosis. Mutations in ERBB genes are frequently detected in human malignant diseases of epithelial and neural origin, making ErbB receptors important drug targets. Targeting EGFR and ErbB2 has been successful in eg. lung and breast cancer, respectively, and mutations in these genes can be used to select patients that are responsive to the targeted treatment. Although somatic ERBB4 mutations have been found in many high-incidence cancers such as melanoma, lung cancer, and colorectal cancer and germ-line ERBB4 mutations have been linked to neuronal disorders and cancer, ErbB4 has generally been neglected as a potential drug target. Thus, the consequences of ERBB4 mutations on ErbB4 biology are largely unknown. This thesis aimed to elucidate the functional consequences and assess the clinical significance of somatic and germ-line ERBB4 mutations in the context of cancer and amyotrophic lateral sclerosis. The results of this study indicated that cancer-associated ERBB4 mutations can promote aberrant ErbB4 function by activating the receptor or inducing qualitative changes in ErbB4 signaling. ERBB4 mutations increased survival or decreased differentiation in vitro, suggesting that ERBB4 mutations can be oncogenic. Importantly, the potentially oncogenic mutations were located in various subdomains in ErbB4, possibly providing explanation for the characteristic scattered pattern of mutations in ERBB4. This study also demonstrated that hereditary variation in ERBB4 gene can have a significant effect on the prognosis of breast cancer. In addition, it was shown that hereditary or de novo germ-line ERBB4 mutations that predispose to amyotrophic lateral sclerosis inhibit ErbB4 activity. Together, these results suggest that ErbB4 should be considered as a novel drug target in cancer and amyotrophic lateral sclerosis.