24 resultados para Coastal ecology.
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Coastal birds are an integral part of coastal ecosystems, which nowadays are subject to severe environmental pressures. Effective measures for the management and conservation of seabirds and their habitats call for insight into their population processes and the factors affecting their distribution and abundance. Central to national and international management and conservation measures is the availability of accurate data and information on bird populations, as well as on environmental trends and on measures taken to solve environmental problems. In this thesis I address different aspects of the occurrence, abundance, population trends and breeding success of waterbirds breeding on the Finnish coast of the Baltic Sea, and discuss the implications of the results for seabird monitoring, management and conservation. In addition, I assess the position and prospects of coastal bird monitoring data, in the processing and dissemination of biodiversity data and information in accordance with the Convention on Biological Diversity (CBD) and other national and international commitments. I show that important factors for seabird habitat selection are island area and elevation, water depth, shore openness, and the composition of island cover habitats. Habitat preferences are species-specific, with certain similarities within species groups. The occurrence of the colonial Arctic Tern (Sterna paradisaea) is partly affected by different habitat characteristics than its abundance. Using long-term bird monitoring data, I show that eutrophication and winter severity have reduced the populations of several Finnish seabird species. A major demographic factor through which environmental changes influence bird populations is breeding success. Breeding success can function as a more rapid indicator of sublethal environmental impacts than population trends, particularly for long-lived and slowbreeding species, and should therefore be included in coastal bird monitoring schemes. Among my target species, local breeding success can be shown to affect the populations of the Mallard (Anas platyrhynchos), the Eider (Somateria mollissima) and the Goosander (Mergus merganser) after a time lag corresponding to their species-specific recruitment age. For some of the target species, the number of individuals in late summer can be used as an easier and more cost-effective indicator of breeding success than brood counts. My results highlight that the interpretation and application of habitat and population studies require solid background knowledge of the ecology of the target species. In addition, the special characteristics of coastal birds, their habitats, and coastal bird monitoring data have to be considered in the assessment of their distribution and population trends. According to the results, the relationships between the occurrence, abundance and population trends of coastal birds and environmental factors can be quantitatively assessed using multivariate modelling and model selection. Spatial data sets widely available in Finland can be utilised in the calculation of several variables that are relevant to the habitat selection of Finnish coastal species. Concerning some habitat characteristics field work is still required, due to a lack of remotely sensed data or the low resolution of readily available data in relation to the fine scale of the habitat patches in the archipelago. While long-term data sets exist for water quality and weather, the lack of data concerning for instance the food resources of birds hampers more detailed studies of environmental effects on bird populations. Intensive studies of coastal bird species in different archipelago areas should be encouraged. The provision and free delivery of high-quality coastal data concerning bird populations and their habitats would greatly increase the capability of ecological modelling, as well as the management and conservation of coastal environments and communities. International initiatives that promote open spatial data infrastructures and sharing are therefore highly regarded. To function effectively, international information networks, such as the biodiversity Clearing House Mechanism (CHM) under the CBD, need to be rooted at regional and local levels. Attention should also be paid to the processing of data for higher levels of the information hierarchy, so that data are synthesized and developed into high-quality knowledge applicable to management and conservation.
Resumo:
Summary
Resumo:
Abstract
Resumo:
The management and conservation of coastal waters in the Baltic is challenged by a number of complex environmental problems, including eutrophication and habitat degradation. Demands for a more holistic, integrated and adaptive framework of ecosystem-based management emphasize the importance of appropriate information on the status and changes of the aquatic ecosystems. The thesis focuses on the spatiotemporal aspects of environmental monitoring in the extensive and geomorphologically complex coastal region of SW Finland, where the acquisition of spatially and temporally representative monitoring data is inherently challenging. Furthermore, the region is subject to multiple human interests and uses. A holistic geographical approach is emphasized, as it is ultimately the physical conditions that set the frame for any human activity. Characteristics of the coastal environment were examined using water quality data from the database of the Finnish environmental administration and Landsat TM/ETM+ images. A basic feature of the complex aquatic environment in the Archipelago Sea is its high spatial and temporal variability; this foregrounds the importance of geographical information as a basis of environmental assessments. While evidence of a consistent water turbidity pattern was observed, the coastal hydrodynamic realm is also characterized by high spatial and temporal variability. It is therefore also crucial to consider the spatial and temporal representativeness of field monitoring data. Remote sensing may facilitate evaluation of hydrodynamic conditions in the coastal region and the spatial extrapolation of in situ data despite their restrictions. Additionally, remotely sensed images can be used in the mapping of many of those coastal habitats that need to be considered in environmental management. With regard to surface water monitoring, only a small fraction of the currently available data stored in the Hertta-PIVET register can be used effectively in scientific studies and environmental assessments. Long-term consistent data collection from established sampling stations should be emphasized but research-type seasonal assessments producing abundant data should also be encouraged. Thus a more comprehensive coordination of field work efforts is called for. The integration of remote sensing and various field measurement techniques would be especially useful in the complex coastal waters. The integration and development of monitoring system in Finnish coastal areas also requires further scientific assesement of monitoring practices. A holistic approach to the gathering and management of environmental monitoring data could be a cost-effective way of serving a multitude of information needs, and would fit the holistic, ecosystem-based management regimes that are currently being strongly promoted in Europe.
Resumo:
In nature, variation for example in herbivory, wind exposure, moisture and pollution impact often creates variation in physiological stress and plant productivity. This variation is seldom clear-cut, but rather results in clines of decreasing growth and productivity towards the high-stress end. These clines of unidirectionally changing stress are generally known as ‘stress gradients’. Through its effect on plant performance, stress has the capacity to fundamentally alter the ecological relationships between individuals, and through variation in survival and reproduction it also causes evolutionary change, i.e. local adaptations to stress and eventually speciation. In certain conditions local adaptations to environmental stress have been documented in a matter of just a few generations. In plant-plant interactions, intensities of both negative interactions (competition) and positive ones (facilitation) are expected to vary along stress gradients. The stress-gradient hypothesis (SGH) suggests that net facilitation will be strongest in conditions of high biotic and abiotic stress, while a more recent ‘humpback’ model predicts strongest net facilitation at intermediate levels of stress. Plant interactions on stress gradients, however, are affected by a multitude of confounding factors, making studies of facilitation-related theories challenging. Among these factors are plant ontogeny, spatial scale, and local adaptation to stress. The last of these has very rarely been included in facilitation studies, despite the potential co-occurrence of local adaptations and changes in net facilitation in stress gradients. Current theory would predict both competitive effects and facilitative responses to be weakest in populations locally adapted to withstand high abiotic stress. This thesis is based on six experiments, conducted both in greenhouses and in the field in Russia, Norway and Finland, with mountain birch (Betula pubescens subsp. czerepanovii) as the model species. The aims were to study potential local adaptations in multiple stress gradients (both natural and anthropogenic), changes in plant-plant interactions under conditions of varying stress (as predicted by SGH), potential mechanisms behind intraspecific facilitation, and factors confounding plant-plant facilitation, such as spatiotemporal, ontogenetic, and genetic differences. I found rapid evolutionary adaptations (occurring within a time-span of 60 to 70 years) towards heavy-metal resistance around two copper-nickel smelters, a phenomenon that has resulted in a trade-off of decreased performance in pristine conditions. Heavy-metal-adapted individuals had lowered nickel uptake, indicating a possible mechanism behind the detected resistance. Seedlings adapted to heavy-metal toxicity were not co-resistant to others forms of abiotic stress, but showed co-resistance to biotic stress by being consumed to a lesser extent by insect herbivores. Conversely, populations from conditions of high natural stress (wind, drought etc.) showed no local adaptations, despite much longer evolutionary time scales. Due to decreasing emissions, I was unable to test SGH in the pollution gradients. In natural stress gradients, however, plant performance was in accordance with SGH, with the strongest host-seedling facilitation found at the high-stress sites in two different stress gradients. Factors confounding this pattern included (1) plant size / ontogenetic status, with seedling-seedling interactions being competition dominated and host-seedling interactions potentially switching towards competition with seedling growth, and (2) spatial distance, with competition dominating at very short planting distances, and facilitation being strongest at a distance of circa ¼ benefactor height. I found no evidence for changes in facilitation with respect to the evolutionary histories of plant populations. Despite the support for SGH, it may be that the ‘humpback’ model is more relevant when the main stressor is resource-related, while what I studied were the effects of ‘non-resource’ stressors (i.e. heavy-metal pollution and wind). The results have potential practical applications: the utilisation of locally adapted seedlings and plant facilitation may increase the success of future restoration efforts in industrial barrens as well as in other wind-exposed sites. The findings also have implications with regard to the effects of global change in subarctic environments: the documented potential by mountain birch for rapid evolutionary change, together with the general lack of evolutionary ‘dead ends’, due to not (over)specialising to current natural conditions, increase the chances of this crucial forest-forming tree persisting even under the anticipated climate change.
Resumo:
Crossroads, crucibles and refuges are three words that may describe natural coastal lagoon environments. The words refer to the complex mix of marine and terrestrial influences, prolonged dilution due to the semi-enclosed nature and the function of a habitat for highly diverse plant and animal communities, some of which are endangered. To attain a realistic picture of the present situation, high vulnerability to anthropogenic impact should be added to the description. As the sea floor in coastal lagoons is usually entirely photic, macrophyte primary production is accentuated compared with open sea environments. There is, however, a lack of proper knowledge on the importance of vegetation for the general functioning of coastal lagoon ecosystems. The aim of this thesis is to assess the role of macrophyte diversity, cover and species identity over temporal and spatial scales for lagoon functions, and to determine which steering factors primarily restrict the qualitative and quantitative composition of vegetation in coastal lagoons. The results are linked to patterns of related trophic levels and the indicative potential of vegetation for assessment of general conditions in coastal lagoons is evaluated. This thesis includes five field studies conducted in flads and glo-flads in the brackish water northern Baltic Sea. Flads and glo-flads are defined as a Baltic variety of coastal lagoons, which due to an inlet threshold and post-glacial landuplift slowly will be isolated from the open sea. This process shrinks inlet size, increases exposure and water retention, and is called habitat isolation. The studied coastal lagoons are situated in the archipelago areas of the eastern coast of Sweden, the Åland Islands and the south-west mainland of Finland, where land-uplift amounts to ca. 5 mm/ per year. Out of 400 evaluated sites, a total of 70 lagoons varying in inlet size, archipelago position and anthropogenic influence to cover for essential environmental variation were chosen for further inventory. Vegetation composition, cover and richness were measured together with several hydrographic and morphometric variables in the lagoons both seasonally and inter-annually to cover for general regional, local and temporal patterns influencing lagoon and vegetation development. On smaller species-level scale, the effects of macrophyte species identity and richness for the fish habitat function were studied by examining the influence of plant interaction on juvenile fish diversity. Thus, the active election of plant monoand polycultures by fish and the diversity of fish in the respective culture were examined and related to plant height and water depth. The lagoons and vegetation composition were found to experience a regime shift initiated by increased habitat isolation along with land-uplift. Vegetation composition altered, richness decreased and cover increased forming a less isolated and more isolated regime, named the vascular plant regime and charophyte regime, respectively according to the dominant vegetation. As total phosphorus in the water, turbidity and the impact of regional influences decreased in parallel, the dominance of charophytes and increasing cover seemed to buffer and stabilize conditions in the charophyte regime and indicated an increased functional role of vegetation for the lagoon ecosystem. The regime pattern was unaffected by geographical differences, while strong anthropogenic impact seemed to distort the pattern due to loss of especially Chara tomentosa L. in the charophyte regime. The regimes were further found unperturbed by short-time temporal fluctuations. In fact the seasonal and inter-annual dynamics reinforced the functional difference between the regimes by the increasing role of vegetation along habitat isolation and the resemblance to lake environments for the charophyte regime. For instance, greater total phosphorus and chlorophyll a concentrations in the water in the beginning of the season in the charophyte regime compared with the vascular plant regime presented a steeper reduction to even lower values than in the vascular plant regime along the season. Despite a regional importance and positive relationship of macrophyte diversity in relation to trophic diversity, species identity was underlined in the results of this thesis, especially with decreasing spatial scale. This result was supported partly by the increased role of charophytes in the functioning of the charophyte regime, but even more explicitly by the species-specific preference of juvenile fish for tall macrophyte monocultures. On a smaller species-level scale, tall plant species in monoculture seemed to be able to increase their length, indicating that negative selection forms preferred habitat structures, which increase fish diversity. This negative relationship between plant and fish diversity suggest a shift in diversity patterns among trohic levels on smaller scale. Thus, as diversity patterns seem complex and diverge among spatial scales, it might be ambiguous to extend the understanding of diversity relationships from one trophic level to the other. All together, the regime shift described here presents similarities to the regime development in marine lagoon environments and shallow lakes subjected to nutrient enrichment. However, due to nutrient buffering by vegetation with increased isolation and water retention as a consequence of the inlet threshold, the development seems opposite to the course along an eutrophication gradient described in marine lagoons lacking an inlet threshold, where the role of vegetation decreases. Thus, the results imply devastating consequences of inlet dredging (decreasing isolation) in terms of vegetation loss and nutrient release, and call for increased conservational supervision. Especially the red listed charophytes would suffer negatively from such interference and the consequences are likely to also deteriorate juvenile fish production. The fact that a new species to Finland, Chara connivens Salzm. Ex. Braun 1835 was discovered during this study further indicates a potential of the lagoons serving as refuges for rare species.