4 resultados para Chronic inflammation

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic inflammation is the underlying cause of many common disabling conditions such as rheumatoid arthritis (RA), multiple sclerosis, coeliac disease, type I diabetes and coronary artery disease. NOX2 complex derived reactive oxygen species (ROS) are known to regulate joint inflammation in rats and mice, and additionally recent genetic evidence associates phagocyte ROS and the development RA in humans. Ncf1mutated mice have lost the functionality of their NOX2 complex and thus have no phagocyte ROS production. These mice suffer from exacerbated arthritis. The immune suppressive effect of the NOX2 complex derived ROS is mediated by monocytes/macrophages that downregulate the activation of autoreactive T cells. The aim of this thesis was to study how ROS modulate immune responses in different arthritis models and in tumor development. Additionally, genome wide gene expression profiling was carried out to assess the global effects of NOX2 complex derived ROS. Firstly, these results confirmed the potent anti-inflammatory nature of phagocyte ROS in arthritis models that were driven by the adaptive immune system. Secondly, arthritis models with predominantly innate immunity induced pathophysiology were moderately enhanced by phagocyte, more specifically, neutrophil derived ROS. Thirdly, the ROS induced immune suppression mediated by the adaptive immune system allowed development of bigger implanted tumors, while phagocyte ROS production did not affect the development of spontaneously growing tumors. Lastly, genome wide gene expression analysis revealed that both humans and mice with abrogated phagocyte NOX2 complex ROS production had an enhanced type I interferon signature in blood, reflecting their hyperinflammatory immune status.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cutaneous squamous cell carcinoma (cSCC) consists 20% of keratinocytederived non-melanoma skin cancers (NMSC), the incidence of which is increasing globally. cSCC is the most common metastatic skin cancer and it causes approximately 20% of skin cancer-related deaths. At present, there are no molecular markers for predicting which cSCC lesions are aggressive or metastasize rapidly. UV radiation is the most important risk factor for cSCC. During the development of cSCC, normal epidermal keratinocytes are transformed and form actinic keratosis (AK), which progresses to cSCC in situ (cSCCIS, Bowen’s disease) and finally to invasive and metastatic cSCC. Inflammatory factors and cells are a part of cancer microenvironment and cSCC can develop in the chronically irritated skin or in the context of chronic inflammation. The complement system is a central part of innate immunity and it regulates normal immunological and inflammatory processes. In this study, the role of complement system components and inhibitors were studied in the progression of cSCC in culture and in vivo. Elevated expression of complement factor H (CFH), complement factor I (CFI), complement component C3 and complement factor B (CFB) was noted in cSCC cells in culture. The analysis with immunohistochemistry (IHC) revealed that the expression of CFH, CFI, C3 and CFB was specifically noted in tumor cells in vivo. The staining intensity of CFH, CFI, C3 and CFB was also stronger in invasive cSCC than in AK or cSCCIS samples. The knockdown of CFH, CFI and CFB with specific siRNAs decreased cSCC cell viability and migration, whereas the knockdown of C3 reduced only cSCC cell migration. Moreover, the knockdown of CFI, C3 and CFB inhibited growth of cSCC xenograft tumors established in SCID mice in vivo. In these tumors, CFI, C3 and CFB knockdown decreased the number of proliferating cells. Moreover, the knockdown of CFI increased local inflammation and complement activation. This study provides evidence for the roles of CFH, CFI, C3 and CFB in the tumor progression indicating these as molecular biomarkers and putative therapeutic targets of cSCC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Keratins (K) are cytoskeletal proteins mainly expressed in the epithelium and constitute the largest subgroup of intermediate filaments (IFs). Simple epithelial keratins (SEKs) K7-K8 and K18-K20 are the major IF elements in the colon. SEK mutations are known to cause around 30 human diseases, mainly affecting liver and skin. However, so far no strong associations between K8 mutations and the development of human colitis have been found. The keratin contribution to colonic health comes from the K8 knock-out (K8-/-) mouse model, which develops an early chronic inflammation and hyperproliferation in the colon. The aim of this thesis was to investigate how keratins contribute to intestinal health and disease mainly by the experimental analysis using the K8-/- mouse colon and cell culture models. The work described here is divided into three studies. The first study revealed involvement of keratins in Notch1 signaling, which is the master regulator of cell fate in the colon. Immunoprecipitation and immunostaining, both in vitro and in vivo showed that K8 binds and co-localizes with Notch1. Interestingly, overexpression of keratins enhanced Notch1 levels and stabilized Notch intracellular domain (NICD), leading to higher activity of Notch signaling. The dramatic decrease in Notch activity in the K8-/- colon resulted in a differentiation shift towards goblet and enteroendocrine cells. The second study focused on the involvement of keratins in colitis-associated cancer (CAC). Although, the K8-/- inflamed colon did not develop colorectal cancer (CRC) spontaneously, it was dramatically more susceptible to induced CRC in two CRC models: azoxymethane (AOM) and multiple intestinal neoplasia (ApcMin/+). To understand how the loss of K8 contributes to CAC, the epithelial inflammasome signaling pathway was analyzed. The released component of active inflammasome, cleaved caspase-1 and its downstream protein, interleukin (IL)-18, were significantly increased in K8-/- and K8-/-ApcMin/+ colons. The inflammasome pathway has recently been suggested to control the levels of IL-22 binding protein (IL-22BP), which is a negative regulator of IL-22 activity. Interestingly, the activated inflammasome correlated with an upregulation of IL-22 and a complete loss of IL-22BP in the K8-null colons. The activation of IL-22 was confirmed by increased levels of downstream signaling, which is phosphorylated signal transducer and activator of transcription 3 (P-STAT3), a transcription factor promoting proliferation and tissue regeneration in the colon. The objective of the third study, was to examine the role of keratins in colon energy metabolism. A proteomic analysis identified mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) as the major ownregulated protein in the K8-/- colonocytes. HMGCS2 is the rate-limiting enzyme in ketogenesis, where energy from bacterially produced short chain fatty acids (SCFAs), mainly butyrate, is converted into ketone bodies in colonic epithelium. Lower levels and activity of HMGCS2 in the K8-/- colon resulted in a blunted ketogenesis. The studies upstream from HMGCS2, identified decreased levels of the SCFA-transporter monocarboxylate transporter 1 (MCT1), which led to increased SCFA content in the stool suggesting impaired butyrate transport through the colonic epithelium. Taken together, the results of the herein thesis indicate that keratins are essential regulators of colon homeostasis, in particular epithelial differentiation, tumorigenesis and energy metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing evidence to support a significant role for chronic non-bacterial, prostatic inflammation in the development of human voiding dysfunction and prostate cancer. Their increased prevalence with age suggests that the decrease of testosterone concentration and/or the ratio of testosterone-to-estradiol in serum may have a role in their development. The main objective of this study was to explore prostatic inflammation and its relationship with voiding dysfunction and prostate carcinogenesis by developing an experimental model. A novel selective estrogen receptor modulator (SERM), fispemifene, was tested for the prevention and treatment of prostatic inflammation in this model. Combined treatment of adult Noble rats with testosterone and estradiol for 3 to 6 weeks induced gradually developing prostatic inflammation in the dorsolateral prostatic lobes. Inflammatory cells, mainly T-lymphocytes, were first seen around capillaries. Thereafter, the lymphocytes migrated into the stroma and into periglandular space. When the treatment time was extended to 13 weeks, the number of inflamed acini increased. Urodynamical recordings indicated voiding dysfunction. When the animals had an above normal testosterone and estradiol concentrations but still had a decreased testosterone-to-estradiol ratio in serum, they developed obstructive voiding. Furthermore, they developed precancerous lesions and prostate cancers in the ducts of the dorsolateral prostatic lobes. Interestingly, inflammatory infiltrates were observed adjacent to precancerous lesions but not in the adjacency of adenocarcinomas suggesting that inflammation has a role in the early stages of prostate carcinogenesis. Fispemifene, a novel SERM tested in this experimental model, showed anti-inflammatory action by attenuating the number of inflamed acini in the dorsolateral prostate. Fispemifene exhibited also antiestrogenic properties by decreasing expression of estrogen-induced biomarkers in the acinar epithelium. These findings suggest that SERMs could be considered as a new therapeutic possibility in the prevention and in the treatment of chronic prostatic inflammation