2 resultados para Chile Power Food
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Food safety has always been a social issue that draws great public attention. With the rapid development of wireless communication technologies and intelligent devices, more and more Internet of Things (IoT) systems are applied in the food safety tracking field. However, connection between things and information system is usually established by pre-storing information of things into RFID Tag, which is inapplicable for on-field food safety detection. Therefore, considering pesticide residue is one of the severe threaten to food safety, a new portable, high-sensitivity, low-power, on-field organophosphorus (OP) compounds detection system is proposed in this thesis to realize the on-field food safety detection. The system is designed based on optical detection method by using a customized photo-detection sensor. A Micro Controller Unit (MCU) and a Bluetooth Low Energy (BLE) module are used to quantize and transmit detection result. An Android Application (APP) is also developed for the system to processing and display detection result as well as control the detection process. Besides, a quartzose sample container and black system box are also designed and made for the system demonstration. Several optimizations are made in wireless communication, circuit layout, Android APP and industrial design to realize the mobility, low power and intelligence.
Resumo:
Food production account for significant share of global environmental impacts. Impacts are global warming, fresh water use, land use and some non-renewable substance consumption like phosphorous fertilizers. Because of non-sustainable food production, the world is heading to different crises. Both food- and freshwater crises and also land area and phosphorous fertilizer shortages are one of many challenges to overcome in near future. The major protein sources production amounts, their impacts on environment and uses are show in this thesis. In this thesis, a more sustainable than conventional way of biomass production for food use is introduced. These alternative production methods are photobioreactor process and syngas-based bioreactor process. The processes’ energy consumption and major inputs are viewed. Their environmental impacts are estimated. These estimations are the compared to conventional protein production’s impacts. The outcome of the research is that, the alternative methods can be more sustainable solutions for food production than conventional production. However, more research is needed to verify the exact impacts. Photobioreactor is more sustainable process than syngas-based bioreactor process, but it is more location depended and uses more land area than syngas-based process. In addition, the technology behind syngas-based application is still developing and it can be more efficient in the future.