3 resultados para Chemistry synthesis

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbohydrates are one of the most abundant classes of biomolecules on earth. In the initial stages of research on carbohydrates much effort was focused on investigation and determination of the structural aspects and complex nature of individual monosaccharides. Later on, development of protective group strategies and methods for oligosaccharide synthesis became the main topics of research. Today, the methodologies developed early on are being utilized in the production of carbohydrates for biological screening events. This multidisciplinary approach has generated the new discipline of glycobiology which focuses on research related to the appearance and biological significance of carbohydrates. In more detail, studies in glycobiology have revealed the essential roles of carbohydrates in cell-cell interactions, biological recognition events, protein folding, cell growth and tumor cell metastasis. As a result of these studies, carbohydrate derived diagnostic and therapeutic agents are likely to be of growing interest in the future. In this doctoral thesis, a journey through the fundamentals of carbohydrate synthesis is presented. The research conducted on this journey was neither limited to the study of any particular phenomena nor to the addressing of a single synthetic challenge. Instead, the focus was deliberately shifted from time to time in order to broaden the scope of the thesis, to continue the learning process and to explore new areas of carbohydrate research. Throughout the work, several previously reported synthetic protocols, especially procedures related to glycosylation reactions and protective group manipulations, were evaluated, modified and utilized or rejected. The synthetic molecules targeted within this thesis were either required for biological evaluations or utilized to study phenomena occuring in larger molecules. In addition, much effort was invested in the complete structural characterization of the synthesized compounds by a combination of NMR spectroscopic techniques and spectral simulations with the PERCH-software. This thesis provides the basics of working with carbohydrate chemistry. In more detail, synthetic strategies and experimental procedures for many different reactions and guidelines for the NMR-spectroscopic characterization of oligosaccharides and glycoconjugates are provided. Therefore, the thesis should prove valuable to researchers starting their own journeys in the ever expanding field of carbohydrate chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microreactors have proven to be versatile tools for process intensification. Over recent decades, they have increasingly been used for product and process development in chemical industries. Enhanced heat and mass transfer in the reactors due to the extremely high surfacearea- to-volume ratio and interfacial area allow chemical processes to be operated at extreme conditions. Safety is improved by the small holdup volume of the reactors and effective control of pressure and temperature. Hydrogen peroxide is a powerful green oxidant that is used in a wide range of industries. Reduction and auto-oxidation of anthraquinones is currently the main process for hydrogen peroxide production. Direct synthesis is a green alternative and has potential for on-site production. However, there are two limitations: safety concerns because of the explosive gas mixture produced and low selectivity of the process. The aim of this thesis was to develop a process for direct synthesis of hydrogen peroxide utilizing microreactor technology. Experimental and numerical approaches were applied for development of the microreactor. Development of a novel microreactor was commenced by studying the hydrodynamics and mass transfer in prototype microreactor plates. The prototypes were designed and fabricated with the assistance of CFD modeling to optimize the shape and size of the microstructure. Empirical correlations for the mass transfer coefficient were derived. The pressure drop in micro T-mixers was investigated experimentally and numerically. Correlations describing the friction factor for different flow regimes were developed and predicted values were in good agreement with experimental results. Experimental studies were conducted to develop a highly active and selective catalyst with a proper form for the microreactor. Pd catalysts supported on activated carbon cloths were prepared by different treatments during the catalyst preparation. A variety of characterization methods were used for catalyst investigation. The surface chemistry of the support and the oxidation state of the metallic phase in the catalyst play important roles in catalyst activity and selectivity for the direct synthesis. The direct synthesis of hydrogen peroxide was investigated in a bench-scale continuous process using the novel microreactor developed. The microreactor was fabricated based on the hydrodynamic and mass transfer studies and provided a high interfacial area and high mass transfer coefficient. The catalysts were prepared under optimum treatment conditions. The direct synthesis was conducted at various conditions. The thesis represents a step towards a commercially viable direct synthesis. The focus is on the two main challenges: mitigating the safety problem by utilization of microprocess technology and improving the selectivity by catalyst development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare-earth based upconverting nanoparticles (UCNPs) have attracted much attention due to their unique luminescent properties. The ability to convert multiple photons of lower energy to ones with higher energy through an upconversion (UC) process offers a wide range of applications for UCNPs. The emission intensities and wavelengths of UCNPs are important performance characteristics, which determine the appropriate applications. However, insufficient intensities still limit the use of UCNPs; especially the efficient emission of blue and ultraviolet (UV) light via upconversion remains challenging, as these events require three or more near-infrared (NIR) photons. The aim of the study was to enhance the blue and UV upconversion emission intensities of Tm3+ doped NaYF4 nanoparticles and to demonstrate their utility in in vitro diagnostics. As the distance between the sensitizer and the activator significantly affect the energy transfer efficiency, different strategies were explored to change the local symmetry around the doped lanthanides. One important strategy is the intentional co-doping of active (participate in energy transfer) or passive (do not participate in energy transfer) impurities into the host matrix. The roles of doped passive impurities (K+ and Sc3+) in enhancing the blue and UV upconversions, as well as in influencing the intense UV upconversion emission through excess sensitization (active impurity) were studied. Additionally, the effects of both active and passive impurity doping on the morphological and optical performance of UCNPs were investigated. The applicability of UV emitting UCNPs as an internal light source for glucose sensing in a dry chemistry test strip was demonstrated. The measurements were in agreement with the traditional method based on reflectance measurements using an external UV light source. The use of UCNPs in the glucose test strip offers an alternative detection method with advantages such as control signals for minimizing errors and high penetration of the NIR excitation through the blood sample, which gives more freedom for designing the optical setup. In bioimaging, the excitation of the UCNPs in the transparent IR region of the tissue permits measurements, which are free of background fluorescence and have a high signal-to-background ratio. In addition, the narrow emission bandwidth of the UCNPs enables multiplexed detections. An array-in-well immunoassay was developed using two different UC emission colours. The differentiation between different viral infections and the classification of antibody responses were achieved based on both the position and colour of the signal. The study demonstrates the potential of spectral and spatial multiplexing in the imaging based array-in-well assays.