5 resultados para Chemically synthesized
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Selostus: Insuliinin vaikutus naudan blastokystien tuottamiseen in vitro kemiallisesti tunnetussa liuoksessa
Resumo:
Kuparipinnan hapettuminen on viimevuosina ollut suosittu tutkimuskohde materiaalitieteissä kuparin laajan teollisuuskäytön vuoksi. Teollisuussovellusten, kuten suojaavien pintaoksidien kehittäminen vaatii kuitenkin syvällistä tuntemusta hapettumisprosessista ja toisaalta myös normaaliolosuhteissa materiaalissa esiintyvien hilavirheiden vaikutuksesta siihen. Tässä työssä keskitytäänkin tutkimaan juuri niitä mekanismeja, joilla erilaiset pintavirheet ja porrastettu pintarakenne vaikuttavathapen adsorptioprosessiin kuparipinnalla. Tutkimus on tehty käyttämällä laskennallisia menetelmiä sekä VASP- ja SIESTA-ohjelmistoja. Työssätutkittiin kemiallisia ja rakenteellisia virheitä Cu(100)-pinnalla, joka on reaktiivisin matalanMillerin indeksin pinta ja porrastetun pinnan tutkimuksessa käytettiin Cu(211)-pintaa, joka puolestaan on yksinkertainen, stabiili ja aiemmissa tutkimuksissa usein käytetty pintarakenne. Työssä tutkitut hilavirheet, adatomit, vähentävät molekyylin dissosiaatiota kuparipinnalla, kun taas vakanssit toimivat dissosiaation keskuksina. Kemiallisena epäpuhtautena käytetty hopeakerros ei estä kuparin hapettumista, sillä happi aiheuttaa mielenkiintoisen segregaatioilmiön, jossa hopeatyöntyy syvemmälle pinnassa jättäen kuparipinnan suojaamattomaksi. Porrastetulla pinnalla (100)-hollow on todennäköisin paikka molekyylin dissosiaatiolle, kun taas portaan bridge-paikka on suotuisin molekulaariselle adsorptiolle. Lisäksi kuparin steppipinnan todettiin olevan reaktiivisempi kuin tasaiset kuparipinnat.
Resumo:
Throughout history indigo was derived from various plants for example Dyer’s Woad (Isatis tinctoria L.) in Europe. In the 19th century were the synthetic dyes developed and nowadays indigo is mainly synthesized from by-products of fossil fuels. Indigo is a so-called vat dye, which means that it needs to be reduced to its water soluble leucoform before dyeing. Nowadays, most of the industrial reduction is performed chemically by sodium dithionite. However, this is considered environmentally unfavourable because of waste waters contaminating degradation products. Therefore there has been interest to find new possibilities to reduce indigo. Possible alternatives for the application of dithionite as the reducing agent are biologically induced reduction and electrochemical reduction. Glucose and other reducing sugars have recently been suggested as possible environmentally friendly alternatives as reducing agents for sulphur dyes and there have also been interest in using glucose to reduce indigo. In spite of the development of several types of processes, very little is known about the mechanism and kinetics associated with the reduction of indigo. This study aims at investigating the reduction and electrochemical analysis methods of indigo and give insight on the reduction mechanism of indigo. Anthraquinone as well as it’s derivative 1,8-dihydroxyanthraquinone were discovered to act as catalysts for the glucose induced reduction of indigo. Anthraquinone introduces a strong catalytic effect which is explained by invoking a molecular “wedge effect” during co-intercalation of Na+ and anthraquinone into the layered indigo crystal. The study includes also research on the extraction of plant-derived indigo from woad and the examination of the effect of this method to the yield and purity of indigo. The purity has been conventionally studied spectrophotometrically and a new hydrodynamic electrode system is introduced in this study. A vibrating probe is used in following electrochemically the leuco-indigo formation with glucose as a reducing agent.
Resumo:
Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.
Resumo:
Harnessing the power of nuclear reactions has brought huge benefits in terms of nuclear energy, medicine and defence as well as risks including the management of nuclear wastes. One of the main issues for radioactive waste management is liquid radioactive waste (LRW). Different methods have been applied to remediate LRW, thereunder ion exchange and adsorption. Comparative studies have demonstrated that Na2Ti2O3SiO4·2H2O titanosilicate sorption materials are the most promising in terms of Cs+ and Sr2+ retention from LRW. Therefore these TiSi materials became the object of this study. The recently developed in Ukraine sol-gel method of synthesizing these materials was chosen among the other reported approaches since it allows obtaining the TiSi materials in the form of particles with size ≥ 4mm. utilizing inexpensive and bulk stable inorganic precursors and yielded the materials with desirable properties by alteration of the comparatively mild synthesis conditions. The main aim of this study was to investigate the physico-chemical properties of sol-gel synthesized titanosilicates for radionuclide uptake from aqueous solutions. The effect of synthesis conditions on the structural and sorption parameters of TiSi xerogels was planned to determine in order to obtain a highly efficient sorption material. The ability of the obtained TiSis to retain Cs+, Sr2+ and other potentially toxic metal cations from the synthetic and real aqueous solutions was intended to assess. To our expectations, abovementioned studies will illustrate the efficiency and profitability of the chosen synthesis approach, synthesis conditions and the obtained materials. X-ray diffraction, low temperature adsorption/desorption surface area analysis, X-ray photoelectron spectroscopy, infrared spectroscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy was used for xerogels characterization. The sorption capability of the synthesized TiSi gels was studied as a function of pH, adsorbent mass, initial concentration of target ion, contact time, temperature, composition and concentration of the background solution. It was found that the applied sol-gel approach yielded materials with a poorly crystalline sodium titanosilicate structure under relatively mild synthesis conditions. The temperature of HTT has the strongest influence on the structure of the materials and consequently was concluded to be the control factor for the preparation of gels with the desired properties. The obtained materials proved to be effective and selective for both Sr2+ and Cs+ decontamination from synthetic and real aqueous solutions like drinking, ground, sea and mine waters, blood plasma and liquid radioactive wastes.