16 resultados para Chemical modification of polymers

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceramics are widely used in industrial applications due to their advantageous thermal and mechanical stability. Corrosion of ceramics is a great problem resulting in significant costs. Coating is one method of reducing adversities of corrosion. There are several different thin film deposition processes available such as sol-gel, Physical and Chemical Vapour Deposition (PVD and CVD). One of the CVD processes, called Atomic Layer Deposition (ALD) stands out for its excellent controllability, accuracy and wide process capability. The most commonly mentioned disadvantage of this method is its slowness which is partly compensated by its capability of processing large areas at once. Several factors affect the ALD process. Such factors include temperature, the grade of precursors, pulse-purge times and flux of precursors as well as the substrate used. Wrongly chosen process factors may cause loss of self-limiting growth and thus, non-uniformities in the deposited film. Porous substrates require longer pulse times than flat surfaces. The goal of this thesis was to examine the effects of ALD films on surface properties of a porous ceramic material. The analyses applied were for permeability, bubble point pressure and isoelectric point. In addition, effects of the films on corrosion resistance of the substrate in aqueous environment were investigated. After being exposured to different corrosive media the ceramics and liquid samples collected were analysed both mechanically and chemically. Visual and contentual differences between the exposed and coated ceramics versus the untreated and uncoated ones were analysed by scanning electron microscope. Two ALD film materials, dialuminium trioxide and titanium dioxide were deposited on the ceramic substrate using different pulse times. The results of both film materials indicated that surface properties of the ceramic material can be modified to some extent by the ALD method. The effect of the titanium oxide film on the corrosion resistance of the ceramic samples was observed to be fairly small regardless of the pulse time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first objective of this study was to find out reliable laboratory methods to predict the effect of enzymes on specific energy consumption and fiber properties of TMP pulp. The second one was to find with interactive software called “Knowledge discovery in databases” enzymes or other additives that can be used in finding a solution to reduce energy consumption of TMP pulp. The chemical composition of wood and enzymes, which have activity on main wood components were presented in the literature part of the work. The results of previous research in energy reduction of TMP process with enzymes were also highlighted. The main principles of knowledge discovery have been included in literature part too. The experimental part of the work contains the methods description in which the standard size chip, crushed chip and fiberized spruce chip (fiberized pulp) were used. Different types of enzymatic treatment with different dosages and time were tested during the experiments and showed. Pectinase, endoglucanase and mixture of enzymes were used for evaluation of method reliability. The fines content and fiber length of pulp was measured and used as evidence of enzymes' effect. The refining method with “Bauer” laboratory disc refiner was evaluated as not highly reliable. It was not able to provide high repeatability of results, because of uncontrolled feeding capacity and refining consistency. The refining method with Valley refiner did not have a lot of variables and showed stable and repeatable results in energy saving. The results of experiments showed that efficient enzymes impregnation is probably the main target with enzymes application for energy saving. During the work the fiberized pulp showed high accessibility to enzymatic treatment and liquid penetration without special impregnating equipment. The reason was that fiberized pulp has larger wood surface area and thereby the contact area between the enzymatic solution and wood is also larger. Standard size chip and crushed chip treatment without special impregnator of enzymatic solution was evaluated as not efficient and did not show visible, repeatable results in energy consumption decrease. Thereby it was concluded that using of fiberized pulp and Valley refiner for measurements of enzymes' effectiveness in SEC decrease is more suitable than normal size chip and crushed chip with “Bauer” refiner. Endoglucanase with 5 kg/t dosage showed about 20% energy consumption decrease. Mixture of enzymes with 1.5 kg/t dosage showed about 15% decrease of energy consumption during the refining. Pectinase at different dosages and treatment times did not show significant effect on energy consumption. Results of knowledge discovery in databases showed the xylanase, cellulase and pectinase blend as most promising for energy reduction in TMP process. Surfactants were determined as effective additives for energy saving with enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biorefining is defined as sustainable conversion of biomass into marketable products and energy. Forests cover almost one third of earth’s land area, and account for approximately 40% of the total annual biomass production. In forest biorefining, the wood components are, in addition to the traditional paper and board products, converted into chemicals and biofuels. The major components in wood are cellulose, hemicelluloses, and lignin. The main hemicellulose in softwoods, which are of interest especially for the Nordic forest industry, is O-acetyl galactoglucomannan (GGM). GGM can be isolated in industrial scale from the waste waters of the mechanical pulping process, but is not yet today industrially utilized. In order to attain desired properties of GGM for specific end-uses, chemical and enzymatic modifications can be performed. Regioselective modifications of GGM, and other galactose-containing polysaccharides were done by oxidations, and by combining oxidations with subsequent derivatizations of the formed carbonyl or carboxyl groups. Two different pathways were investigated: activation of the C-6 positions in different sugar units by TEMPO-mediated oxidation, and activation of C-6 position in only galactose-units by oxidation catalyzed by the enzyme galactose oxidase. The activated sites were further selectively derivatized; TEMPO-oxidized GGM by a carbodiimide-mediated reaction forming amides, and GO-oxidized GGM by indium-mediated allylation introducing double or triple bonds to the molecule. In order to better understand the reaction, and to develop a MALDI-TOF-MS method for characterization of regioselectively allylated GGM, α-D-galactopyranoside and raffinose were used as model compounds. All reactions were done in aqueous media. To investigate the applicability of the modified polysaccharides for, e.g., cellulose surface functionalization, their sorption onto pulp fibres was studied. Carboxylation affects the sorption tendency significantly; a higher degree of oxidation leads to lower sorption. By controlling the degree of oxidation of the polysaccharides and the ionic strength of the sorption media, high degrees of sorption of carboxylated polysaccharides onto cellulose could, however, be obtained. Anionic polysaccharides were used as templates during laccase-catalyzed polymerization of aniline, offering a green, chemo-enzymatic route for synthesis of conducting polyaniline (PANI) composite materials. Different polysaccharide templates, such as, native GGM, TEMPO-oxidized GGM, naturally anionic κ-carrageenan, and nanofibrillated cellulose produced by TEMPO-oxidation, were assessed. The conductivity of the synthesized polysaccharide/PANI biocomposites varies depending on the polysaccharide template; κ-CGN, the anionic polysaccharide with the lowest pKa value, produces the polysaccharide/PANI biocomposites with the highest conductivity. The presented derivatization, sorption, and polymerization procedures open new application windows for polysaccharides, such as spruce GGM. The modified polysaccharides and the conducting biocomposites produced provide potential applications in biosensors, electronic devices, and tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface chemistry is of great importance in plant biomass engineering and applications. The surface chemical composition of biomass which includes lignin, carbohydrates and extractives influences its interactions with chemical agents, such as pulp processing/papermaking chemicals, or enzymes for different purposes. In this thesis, the changes in the surface chemical composition of lignocellulosic biomass after physical modification for the improvement of resulting paper properties and chemical treatment for the enhancement of enzymatic hydrolysis were investigated. Low consistency (LC) refining was used as physical treatment of bleached softwood and hardwood pulp samples, and the surface chemistry of refined samples was investigated. The refined pulp was analysed as whole pulp while the fines-free fibre samples were characterized separately. The fines produced in LCrefining contributed to an enlarged surface specific area as well as the change of surface coverage by lignin and extractives, as investigated by X-ray photoelectron spectroscopy (XPS). The surface coverage by lignin of the whole pulp decreased after refining while the surface coverage by extractives increased both for pine and eucalyptus. In the case of pine, the removal of fines resulted in reduction of the surface coverage by extractives, while the surface coverage by lignin increased on fibre sample (without fines). In the case of eucalyptus, the surface coverage by lignin of fibre samples decreased after the removal of fines. In addition, the surface distribution of carbohydrates, lignin and extractives of pine and eucalyptus samples was determined by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). LC-refining increased the amounts of pentose, hexose and extractives on the surface of pine samples. ToF-SIMS also gave clear evidence about xylan deposition and reduction of surface lignin distribution on the fibre of eucalyptus. However, the changes in the surface chemical composition during the physical treatment has led to an increase in the adsorption of fluorescent whitening agents (FWAs) on fibres due to a combination of electro-static forces, specific surface area of fibres and hydrophobic interactions. Various physicochemical pretreatments were conducted on wood and non-wood biomass for enhancing enzymatic hydrolysis of polysaccharides, and the surface chemistry of the pretreated and enzymatically hydrolysed samples was investigated by field emission scanning electron microscopy (FE-SEM), XPS and ToF-SIMS. A hydrotrope was used as a relatively novel pretreatment technology both in the case of wood and non-wood biomass. For comparison, ionic liquid and hydrothermal pretreatments were applied on softwood and hardwood as well. Thus, XPS analysis showed that the surface lignin was more efficiently removed by hydrotropic pretreatment compared to ionic liquid or hydrothermal pretreatments. SEM analysis also found that already at room temperature the ionic liquid pretreatments were more effective in swelling the fibres compared with hydrotropic pretreatment at elevated temperatures. The enzymatic hydrolysis yield of hardwood was enhanced due to the decrease in surface coverage of lignin, which was induced by hydrotropic treatment. However, hydrotropic pretreatment was not appropriate for softwood because of the predominance of guaiacyl lignin structure in this material. In addition, the reduction of surface lignin and xylan during pretreatment and subsequent increase in cellulose hydrolysis by enzyme could be observed from ToF-SIMS results. The characterisation of the non-wood biomass (e.g. sugarcane bagasse and common reed) treated by hydrotropic method, alkaline and alkaline hydrogen peroxide pretreatments were carried out by XPS and ToF-SIMS. According to the results, the action for the removal of the surface lignin of non-wood biomass by hydrotropic pretreatment was more significant compared to alkaline and alkaline hydrogen peroxide pretreatments, although a higher total amount of lignin could be removed by alkaline and alkaline hydrogen peroxide pretreatment. Furthermore, xylan could be remarkably more efficiently removed by hydrotropic method. Therefore, the glucan yield achieved from hydrotropic treated sample was higher than that from samples treated with alkaline or alkaline hydrogen peroxide. Through the use of ToF-SIMS, the distribution and localization of lignin and carbohydrates on the surface of ignocelluloses during pretreatment and enzymatic hydrolysis could be detected, and xylan degradation during enzymatic hydrolysis could also be assessed. Thus, based on the results from XPS and ToF-SIMS, the mechanism of the hydrotropic pretreatment in improving the accessibility of enzymes to fibre and further ameliorating of the enzymatic saccharification could be better elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present dissertation is devoted to the systematic approach to the development of organic toxic and refractory pollutants abatement by chemical decomposition methods in aqueous and gaseous phases. The systematic approach outlines the basic scenario of chemical decomposition process applications with a step-by-step approximation to the most effective result with a predictable outcome for the full-scale application, confirmed by successful experience. The strategy includes the following steps: chemistry studies, reaction kinetic studies in interaction with the mass transfer processes under conditions of different control parameters, contact equipment design and studies, mathematical description of the process for its modelling and simulation, processes integration into treatment technology and its optimisation, and the treatment plant design. The main idea of the systematic approach for oxidation process introduction consists of a search for the most effective combination between the chemical reaction and the treatment device, in which the reaction is supposed to take place. Under this strategy,a knowledge of the reaction pathways, its products, stoichiometry and kinetics is fundamental and, unfortunately, often unavailable from the preliminary knowledge. Therefore, research made in chemistry on novel treatment methods, comprisesnowadays a substantial part of the efforts. Chemical decomposition methods in the aqueous phase include oxidation by ozonation, ozone-associated methods (O3/H2O2, O3/UV, O3/TiO2), Fenton reagent (H2O2/Fe2+/3+) and photocatalytic oxidation (PCO). In the gaseous phase, PCO and catalytic hydrolysis over zero valent ironsare developed. The experimental studies within the described methodology involve aqueous phase oxidation of natural organic matter (NOM) of potable water, phenolic and aromatic amino compounds, ethylene glycol and its derivatives as de-icing agents, and oxygenated motor fuel additives ¿ methyl tert-butyl ether (MTBE) ¿ in leachates and polluted groundwater. Gas-phase chemical decomposition includes PCO of volatile organic compounds and dechlorination of chlorinated methane derivatives. The results of the research summarised here are presented in fifteenattachments (publications and papers submitted for publication and under preparation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of contaminants such as arsenic, cadmium and lead are released into the environment from natural and anthropogenic sources contaminating food and water. Chronic oral ingestion of arsenic, cadmium and lead is associated with adverse effects in the skin, internal organs and nervous system. In addition to conventional methods, biosorption using inactivated biomasses of algae, fungi and bacteria has been introduced as a novel method for decontamination of toxic metals from water. The aim of this work was to evaluate the applicability of lactic acid bacteria as tools for heavy metal removal from water and characterize their properties for further development of a biofilter. The results established that in addition to removal of mycotoxins, cyanotoxins and heterocyclic amines, lactic acid bacteria have a capacity to bind cationic heavy metals, cadmium and lead. The binding was found to be dependent on the bacterial strain and pH, and occurred rapidly on the bacterial surface, but was reduced in the presence of other cationic metals. The data demonstrates that the metals were bound by electrostatic interactions to cell wall components. Transmission electron micrographs showed the presence of lead deposits on the surface of biomass used in the lead binding studies, indicating involvement of another uptake/binding mechanism. The most efficient strains bound up to 55 mg Cd and 176 mg Pb / g dry biomass. A low removal of anionic As(V) was also observed after chemical modification of the cell wall. Full desorption of bound cadmium and lead using either dilute HNO3 or EDTA established the reversibility of binding. Removal of both metals was significantly reduced when biomass regenerated with EDTA was used. Biomass regenerated with dilute HNO3 retained its cadmium binding capacity well, but lead binding was reduced. The results established that the cadmium and lead binding capacity of lactic acid bacteria, and factors affecting it, are similar to what has been previously observed for other biomasses used for the same purpose. However, lactic acid bacteria have a capacity to remove other aqueous contaminants such as cyanotoxins, which may give them an additional advantage over the other alternatives. Further studies focusing on immobilization of biomass and the removal of several contaminants simultaneously using immobilized bacteria are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Förståelse av olika ytors vätningsegenskaper är viktig i många pappers-relaterade industriella processer eftersom vätningen påverkar materialbeteendet, t.ex. vid bestrykning, tryckning och laminering. Förmågan att kontrollera vätningen är av intresse, därför att den ger nya möjligheter till modifikation av ytor. Vätningen styrs av ytans struktur och kemi. Kunskap om dessa egenskaper krävs både i fundamentala studier och för industriella applikationer. Nanopartiklar används ofta för att skapa funktionella ytor med mångsidiga egenskaper. Detta arbete strävar till att förstå de fysikalisk-kemiska egenskaperna hos papper och kartong som är bestrukna med nanopartiklar, för att sedan kunna förklara de observerade förändringarna i ytornas vätningsförmåga. Funktionella ytor med justerbar vätningsförmåga tillverkades genom att deponera nanopartiklar i en rulle-till-rulle vätskeflammasprutningprocess (LFS). TiO2 -nanopartikelbeläggningen skapar en superhydrofob yta som har över 160° kontaktvinkelmed vatten, medan SiO2-nanopartikelbeläggningar skapar mycket hydrofila ytor med kontaktvinklar så låga som 21° med vatten. Superhydrofobiciteten eller hydrofiliteten är ett resultat av den kombinerade effekten hos ytstrukturen och ytkemin, såsom nanopartiklarnas oxidationsnivå eller karbonatiseringsnivå. Kartongytor som är bestrukna med TiO2-nanopartiklar kan vara såväl superhydrofoba som hydrofila. Hydrofilitet kan induceras genom UVA-strålning, medan behandling i hög temperatur i ugn resulterar i en superhydrofob yta. Ett mål med arbetet var att förstå mekanismerna hos de kemiska för ändringar som sker under UVA-bestrålning och värmebehandling av ytor, bestrukna med TiO2-nanopartiklar. Ytornas abrasions- och kompressionsmotstånd samt relaterade förändringar i funktionella egenskaper undersöktes. Resultaten skapar en bättre förståelse för potentiell användning av LFS-nanopartikelbeläggningar i pappersrelaterade applikationer. En förståelse för stabiliteten hos nanopartikelbeläggningarna när de exponeras för externa krafter är viktig för att försäkra deras funktionalitet i industriella applikationer och för att garantera beläggningarnas miljö-, hälso- och säkerhetsaspekter. ------------------------------------------ Pinnan kastumisominaisuuksien hallinta on tärkeää monissa paperiteollisuuden prosesseissa, sillä pinnan kastuminen vaikuttaa esimerkiksi päällystämiseen, painamiseen ja laminointiin. Pinnan kastuvuuden säätäminen avaa mielenkiintoisia uusia mahdollisuuksia pintojen ominaisuuksien hallintaan. Pinnan kastuvuus määräytyy pinnan rakenteesta ja kemiasta, ja näiden ominaisuuksien ymmärtäminen on tärkeää sekä perustutkimuksessa että teollisissa sovelluksissa. Nanopartikkeleita käytetään usein toiminnallisten ja hallitusti kastuvien pintojen aikaansaamiseksi. Tässä työssä on tarkasteltu nanopartikkelipinnoitetun paperin ja kartongin fysikaalis-kemiallisia pintaominaisuuksia, jotka selittävät havaittuja muutoksia pinnan kastuvuudessa. Toiminnalliset pinnat säädettävillä kastuvuusominaisuuksilla valmistettiin nesteliekkiruiskutus (LFS) nanopartikkelipinnoituksella rullalta rullalle-menetelmällä. TiO2-nanopartikkelipäällystys saa aikaan superhydrofobisen pinnan, jonka veden kontaktikulma on suurempi kuin 160°. Toisaalta SiO2-nanopartikkelipäällystys muuttaa pinnan hyvin hydrofiiliseksi, veden kontaktikulman ollessa vain 21°. Pinnan superhydrofobisuus tai hydrofiilisyys riippuu nanopartikkelipinnan rakenteesta ja pintakemiasta kuten pinnan hapettumisasteesta ja hiilipitoisuudesta. TiO2-nanopartikkelipinnoitetun kartonkipinnan kastumista voidaan säätää superhydrofobisen ja hydrofiilisen välillä. Pinnan hydrofiilisyys saadaan aikaan UVA-valolla, kun taas superhydrofobinen pinta voidaan palauttaa korkeassa lämpötilassa uunissa. Tämän työn tavoitteena oli selvittää, millaisia muutoksia TiO2-nanopartikkelipäällystetyn pinnan kemiassa tapahtuu UVA-valon ja lämpökäsittelyn vaikutuksesta. Työssä tarkasteltiin myös pinnan mekaanisen hankauksen ja kokoonpuristuksen vaikutusta toiminnallisiin ominaisuuksiin. Työssä saavutetut tulokset auttavat ymmärtämään LFS-nanopartikkelipäällystettyjen pintojen soveltuvuutta paperiin liittyvissä sovelluksissa. Nanopartikkelipäällystettyjen pintojen stabiilius ulkoisten voimien alaisena on tärkeää toiminnallisten päällystysten ympäristö-, terveys- ja turvallisuusnäkökulmia tarkasteltaessa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This doctoral dissertation presents studies of the formation and evolution of galaxies, through observations and simulations of galactic halos. The halo is the component of galaxies which hosts some of the oldest objects we know of in the cosmos; it is where clues to the history of galaxies are found, for example, by how the chemical structure is related to the dynamics of objects in the halo. The dynamical and chemical structure of halos, both in the Milky Way’s own halo, and in two elliptical galaxies, is the underlying theme in the research. I focus on the density falloff and chemistry of the two external halos, and on the dynamics, density falloff, and chemistry of the Milky Way halo. I first study galactic halos via computer simulations, to test the long- term stability of an anomalous feature recently found in kinematics of the Milky Way’s metal-poor stellar halo. I find that the feature is transient, making its origin unclear. I use a second set of simulations to test if an initially strong relation between the dynamics and chemistry of halo glob-ular clusters in a Milky Way-type galaxy is affected by a merging satellite galaxy, and find that the relation remains strong despite a merger in which the satellite is a third of the mass of the host galaxy. From simulations, I move to observing halos in nearby galaxies, a challenging procedure as most of the light from galaxies comes from the disk and bulge components as opposed to the halo. I use Hubble Space Tele scope observations of the halo of the galaxy M87 and, comparing to similar observations of NGC 5128, find that the chemical structure of the inner halo is similar for both of these giant elliptical galaxies. I use Very Large Telescope observations of the outer halo of NGC 5128 (Centaurus A) and, because of the difficultly in resolving dim extragalac- tic stellar halo populations, I introduce a new technique to subtract the contaminating background galaxies. A transition from a metal-rich stellar halo to a metal-poor has previously been discovered in two different types of galaxies, the disk galaxy M31 and the classic elliptical NGC 3379. Unexpectedly, I discover in this third type of galaxy, the merger remnant NGC 5128, that the density of metal-rich and metal-poor halo stars falls at the same rate within the galactocentric radii of 8 − 65 kpc, the limit of our observations. This thesis presents new results which open opportunities for future investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing demand and shortage of energy resources and clean water due to the rapid development of industry, population growth and long term droughts have become an issue worldwide. As a result, global warming, long term droughts and pollution-related diseases are becoming more and more serious. The traditional technologies, such as precipitation, neutralization, sedimentation, filtration and waste immobilization, cannot prevent the pollution but restrict the waste chemicals only after the pollution emission. Meanwhile, most of these treatments cannot thoroughly degrade the contaminants and may generate toxic secondary pollutants into ecosystem. Heterogeneous photocatalysis as the innovative wastewater technology attracts many attention, because it is able to generate highly reactive transitory species for total degradation of organic compounds, water pathogens and disinfection by-products. Semiconductor as photocatalysts have demonstrated their efficiency in degrading a wide range of organics into readily biodegradable compounds, and eventually mineralized them to innocuous carbon dioxide and water. But, the efficiency of photocatalysis is limited, and hence, it is crucial issue to modify photocatalyst to enhance photocatalytic activity. In this thesis, first of all, two literature views are conducted. A survey of materials for photocatalysis has been carried out in order to summarize the properties and the applications of photocatalysts that have been developed in this field. Meanwhile, the strategy for the improvement of photocatalytic activity have been explicit discussed. Furthermore, all the raw material and chemicals used in this work have been listed as well as a specific experimental process and characterization method has been described. The synthesize methods of different photocatalysts have been depicted step by step. Among these cases, different modification strategies have been used to enhance the efficiency of photocatalyst on degradation of organic compounds (Methylene Blue or Phenol). For each case, photocatalytic experiments have been done to exhibit their photocatalytic activity.The photocatalytic experiments have been designed and its process have been explained and illustrated in detailed. Moreover, the experimental results have been shown and discussion. All the findings have been demonstrated in detail and discussed case by case. Eventually, the mechanisms on the improvement of photocatalytic activities have been clarified by characterization of samples and analysis of results. As a conclusion, the photocatalytic activities of selected semiconductors have been successfully enhanced via choosing appropriate strategy for the modification of photocatalysts.