48 resultados para Chaco Boreal (Paraguay and Bolivia)

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bioavailability of metals and their potential for environmental pollution depends not simply on total concentrations, but is to a great extent determined by their chemical form. Consequently, knowledge of aqueous metal species is essential in investigating potential metal toxicity and mobility. The overall aim of this thesis is, thus, to determine the species of major and trace elements and the size distribution among the different forms (e.g. ions, molecules and mineral particles) in selected metal-enriched Boreal river and estuarine systems by utilising filtration techniques and geochemical modelling. On the basis of the spatial physicochemical patterns found, the fractionation and complexation processes of elements (mainly related to input of humic matter and pH-change) were examined. Dissolved (<1 kDa), colloidal (1 kDa-0.45 μm) and particulate (>0.45 μm) size fractions of sulfate, organic carbon (OC) and 44 metals/metalloids were investigated in the extremely acidic Vörå River system and its estuary in W Finland, and in four river systems in SW Finland (Sirppujoki, Laajoki, Mynäjoki and Paimionjoki), largely affected by soil erosion and acid sulfate (AS) soils. In addition, geochemical modelling was used to predict the formation of free ions and complexes in these investigated waters. One of the most important findings of this study is that the very large amounts of metals known to be released from AS soils (including Al, Ca, Cd, Co, Cu, Mg, Mn, Na, Ni, Si, U and the lanthanoids) occur and can prevail mainly in toxic forms throughout acidic river systems; as free ions and/or sulfate-complexes. This has serious effects on the biota and especially dissolved Al is expected to have acute effects on fish and other organisms, but also other potentially toxic dissolved elements (e.g. Cd, Cu, Mn and Ni) can have fatal effects on the biota in these environments. In upstream areas that are generally relatively forested (higher pH and contents of OC) fewer bioavailable elements (including Al, Cu, Ni and U) may be found due to complexation with the more abundantly occurring colloidal OC. In the rivers in SW Finland total metal concentrations were relatively high, but most of the elements occurred largely in a colloidal or particulate form and even elements expected to be very soluble (Ca, K, Mg, Na and Sr) occurred to a large extent in colloidal form. According to geochemical modelling, these patterns may only to a limited extent be explained by in-stream metal complexation/adsorption. Instead there were strong indications that the high metal concentrations and dominant solid fractions were largely caused by erosion of metal bearing phyllosilicates. A strong influence of AS soils, known to exist in the catchment, could be clearly distinguished in the Sirppujoki River as it had very high concentrations of a metal sequence typical of AS soils in a dissolved form (Ba, Br, Ca, Cd, Co, K, Mg, Mn, Na, Ni, Rb and Sr). In the Paimionjoki River, metal concentrations (including Ba, Cs, Fe, Hf, Pb, Rb, Si, Th, Ti, Tl and V; not typical of AS soils in the area) were high, but it was found that the main cause of this was erosion of metal bearing phyllosilicates and thus these metals occurred dominantly in less toxic colloidal and particulate fractions. In the two nearby rivers (Laajoki and Mynäjoki) there was influence of AS soils, but it was largely masked by eroded phyllosilicates. Consequently, rivers draining clay plains sensitive to erosion, like those in SW Finland, have generally high background metal concentrations due to erosion. Thus, relying on only semi-dissolved (<0.45 μm) concentrations obtained in routine monitoring, or geochemical modelling based on such data, can lead to a great overestimation of the water toxicity in this environment. The potentially toxic elements that are of concern in AS soil areas will ultimately be precipitated in the recipient estuary or sea, where the acidic metalrich river water will gradually be diluted/neutralised with brackish seawater. Along such a rising pH gradient Al, Cu and U will precipitate first together with organic matter closest to the river mouth. Manganese is relatively persistent in solution and, thus, precipitates further down the estuary as Mn oxides together with elements such as Ba, Cd, Co, Cu and Ni. Iron oxides, on the contrary, are not important scavengers of metals in the estuary, they are predicted to be associated only with As and PO4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the abundance of top predators have brought about notable, cascading effects in ecosystems around the world. In this thesis, I examined several potential trophic cascades in boreal ecosystems, and their separate interspecific interactions. The main aim of the thesis was to investigate whether predators in the boreal forests have direct or indirect cascading effects on the lower trophic levels. First, I compared the browsing effects of different mammalian herbivores by excluding varying combinations of voles, hares and cervids from accessing the seedlings of silver birch (Betula pendula), Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Additionally, I studied the effect of simulated predation risk on vole browsing by using auditory cues of owls. Moving upwards on the trophic levels, I examined the intraguild interactions between the golden eagle (Aquila chrysaetos), and its mesopredator prey, the red fox (Vulpes vulpes) and the pine marten (Martes martes). To look at an entire potential trophic cascade, I further studied the combined impacts of eagles and mesopredators on the black grouse (Tetrao tetrix) and the hazel grouse (Tetrastes bonasia), predicting that the shared forest grouse prey would benefit from eagle presence. From the tree species studied, birch appears to be the most palatable one for the mammalian herbivores. I observed growth reductions in the presences of cervids and low survival associated with hares and voles, which suggests that they all weaken regeneration in birch stands. Furthermore, the simulated owl predation risk appeared to reduce vole browsing on birches in late summer, although the preferred grass forage is then old and less palatable. Browsing by voles and hares had a negative effect on the condition and survival of Scots pine, but in contrast, the impact of mammalian herbivores on spruce was found to be small, at least when more preferred food is available. I observed that the presence of golden eagles had a negative effect on the abundance of adult black grouse but a positive, protective effect on the proportion of juveniles in both black grouse and hazel grouse. Yet, this positive effect was not dependent on the abundance foxes or martens, nor did eagles seem to effectively decrease the abundance of these mesopredators. Conversely, the protection effect on grouse could arise from fear effects and also be mediated by other mesopredators. The results of this thesis provide important new information about trophic interactions in the boreal food webs. They highlight how different groups of mammalian herbivores vary in their effects on the growth and condition of different tree seedlings. Lowered cervid abundances could improve birch regeneration, which indirectly supports the idea that the key predators of cervids could cause cascading effects also in Fennoscandian forests. Owls seem to reduce vole browsing through an intimidation effect, which is a novel result of the cascading effects of owl vocalisation and could even have applications for protecting birch seedlings. In the third cascade examined in this thesis, I found the golden eagle to have a protective effect on the reproducing forest grouse, but it remains unclear through which smaller predators this effect is mediated. Overall, the results of this thesis further support the idea that there are cascading effects in the forests of Northern Europe, and that they are triggered by both direct and non‐lethal effects of predation.

Relevância:

40.00% 40.00%

Publicador: