18 resultados para Celtic languages.

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ohjelmiston kehitystyökalut käyttävät infromaatiota kehittäjän tuottamasta lähdekoodista. Informaatiota hyödynnetään ohjelmistoprojektin eri vaiheissa ja eri tarkoituksissa. Moderneissa ohjelmistoprojekteissa käytetyn informaation määrä voi kasvaa erittäin suureksi. Ohjelmistotyökaluilla on omat informaatiomallinsa ja käyttömekanisminsa. Informaation määrä sekä erilliset työkaluinformaatiomallit tekevät erittäin hankalaksi rakentaa joustavaa työkaluympäristöä, erityisesti ongelma-aluekohtaiseen ohjelmiston kehitysprosessiin. Tässä työssä on analysoitu perusinformaatiometamalleja Unified Modeling language kielestä, Python ohjelmointikielestä ja C++ ohjelmointikielestä. Metainformaation taso on rajoitettu rakenteelliselle tasolle. Ajettavat rakenteet on jätetty pois. ModelBase metamalli on yhdistetty olemassa olevista analysoiduista metamalleista. Tätä metamallia voidaan käyttää tulevaisuudessa ohjelmistotyökalujen kehitykseen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research on language equations has been active during last decades. Compared to the equations on words the equations on languages are much more difficult to solve. Even very simple equations that are easy to solve for words can be very hard for languages. In this thesis we study two of such equations, namely commutation and conjugacy equations. We study these equations on some limited special cases and compare some of these results to the solutions of corresponding equations on words. For both equations we study the maximal solutions, the centralizer and the conjugator. We present a fixed point method that we can use to search these maximal solutions and analyze the reasons why this method is not successful for all languages. We give also several examples to illustrate the behaviour of this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of domain-specific languages (DSLs) has been proposed as an approach to cost-e ectively develop families of software systems in a restricted application domain. Domain-specific languages in combination with the accumulated knowledge and experience of previous implementations, can in turn be used to generate new applications with unique sets of requirements. For this reason, DSLs are considered to be an important approach for software reuse. However, the toolset supporting a particular domain-specific language is also domain-specific and is per definition not reusable. Therefore, creating and maintaining a DSL requires additional resources that could be even larger than the savings associated with using them. As a solution, di erent tool frameworks have been proposed to simplify and reduce the cost of developments of DSLs. Developers of tool support for DSLs need to instantiate, customize or configure the framework for a particular DSL. There are di erent approaches for this. An approach is to use an application programming interface (API) and to extend the basic framework using an imperative programming language. An example of a tools which is based on this approach is Eclipse GEF. Another approach is to configure the framework using declarative languages that are independent of the underlying framework implementation. We believe this second approach can bring important benefits as this brings focus to specifying what should the tool be like instead of writing a program specifying how the tool achieves this functionality. In this thesis we explore this second approach. We use graph transformation as the basic approach to customize a domain-specific modeling (DSM) tool framework. The contributions of this thesis includes a comparison of di erent approaches for defining, representing and interchanging software modeling languages and models and a tool architecture for an open domain-specific modeling framework that e ciently integrates several model transformation components and visual editors. We also present several specific algorithms and tool components for DSM framework. These include an approach for graph query based on region operators and the star operator and an approach for reconciling models and diagrams after executing model transformation programs. We exemplify our approach with two case studies MICAS and EFCO. In these studies we show how our experimental modeling tool framework has been used to define tool environments for domain-specific languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis presents results obtained during the authors PhD-studies. First systems of language equations of a simple form consisting of just two equations are proved to be computationally universal. These are systems over unary alphabet, that are seen as systems of equations over natural numbers. The systems contain only an equation X+A=B and an equation X+X+C=X+X+D, where A, B, C and D are eventually periodic constants. It is proved that for every recursive set S there exists natural numbers p and d, and eventually periodic sets A, B, C and D such that a number n is in S if and only if np+d is in the unique solution of the abovementioned system of two equations, so all recursive sets can be represented in an encoded form. It is also proved that all recursive sets cannot be represented as they are, so the encoding is really needed. Furthermore, it is proved that the family of languages generated by Boolean grammars is closed under injective gsm-mappings and inverse gsm-mappings. The arguments apply also for the families of unambiguous Boolean languages, conjunctive languages and unambiguous languages. Finally, characterizations for morphisims preserving subfamilies of context-free languages are presented. It is shown that the families of deterministic and LL context-free languages are closed under codes if and only if they are of bounded deciphering delay. These families are also closed under non-codes, if they map every letter into a submonoid generated by a single word. The family of unambiguous context-free languages is closed under all codes and under the same non-codes as the families of deterministic and LL context-free languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jussi-Pekka Hakkaraisen esitys Ala-Saksin Valtiollisessa ja Yliopistollisessa kirjastossa Göttingenissä 28.5.2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jussi-Pekka Hakkaraisen esitys Viron kielen instituutissa (Eesti keele instituut) Tallinnassa 23.10.2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation at "Soome-ugri keelte andmebaasid ja e-leksikograafia" at Eesti Keele Instituut (Institution of Estonian Languages) in Tallnn on the 18th of November 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation of Jussi-Pekka Hakkarainen, held at the Emtacl15 conference on the 20th of April 2015 in Trondheim, Norway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emerging technologies have recently challenged the libraries to reconsider their role as a mere mediator between the collections, researchers, and wider audiences (Sula, 2013), and libraries, especially the nationwide institutions like national libraries, haven’t always managed to face the challenge (Nygren et al., 2014). In the Digitization Project of Kindred Languages, the National Library of Finland has become a node that connects the partners to interplay and work for shared goals and objectives. In this paper, I will be drawing a picture of the crowdsourcing methods that have been established during the project to support both linguistic research and lingual diversity. The National Library of Finland has been executing the Digitization Project of Kindred Languages since 2012. The project seeks to digitize and publish approximately 1,200 monograph titles and more than 100 newspapers titles in various, and in some cases endangered Uralic languages. Once the digitization has been completed in 2015, the Fenno-Ugrica online collection will consist of 110,000 monograph pages and around 90,000 newspaper pages to which all users will have open access regardless of their place of residence. The majority of the digitized literature was originally published in the 1920s and 1930s in the Soviet Union, and it was the genesis and consolidation period of literary languages. This was the era when many Uralic languages were converted into media of popular education, enlightenment, and dissemination of information pertinent to the developing political agenda of the Soviet state. The ‘deluge’ of popular literature in the 1920s to 1930s suddenly challenged the lexical orthographic norms of the limited ecclesiastical publications from the 1880s onward. Newspapers were now written in orthographies and in word forms that the locals would understand. Textbooks were written to address the separate needs of both adults and children. New concepts were introduced in the language. This was the beginning of a renaissance and period of enlightenment (Rueter, 2013). The linguistically oriented population can also find writings to their delight, especially lexical items specific to a given publication, and orthographically documented specifics of phonetics. The project is financially supported by the Kone Foundation in Helsinki and is part of the Foundation’s Language Programme. One of the key objectives of the Kone Foundation Language Programme is to support a culture of openness and interaction in linguistic research, but also to promote citizen science as a tool for the participation of the language community in research. In addition to sharing this aspiration, our objective within the Language Programme is to make sure that old and new corpora in Uralic languages are made available for the open and interactive use of the academic community as well as the language societies. Wordlists are available in 17 languages, but without tokenization, lemmatization, and so on. This approach was verified with the scholars, and we consider the wordlists as raw data for linguists. Our data is used for creating the morphological analyzers and online dictionaries at the Helsinki and Tromsø Universities, for instance. In order to reach the targets, we will produce not only the digitized materials but also their development tools for supporting linguistic research and citizen science. The Digitization Project of Kindred Languages is thus linked with the research of language technology. The mission is to improve the usage and usability of digitized content. During the project, we have advanced methods that will refine the raw data for further use, especially in the linguistic research. How does the library meet the objectives, which appears to be beyond its traditional playground? The written materials from this period are a gold mine, so how could we retrieve these hidden treasures of languages out of the stack that contains more than 200,000 pages of literature in various Uralic languages? The problem is that the machined-encoded text (OCR) contains often too many mistakes to be used as such in research. The mistakes in OCRed texts must be corrected. For enhancing the OCRed texts, the National Library of Finland developed an open-source code OCR editor that enabled the editing of machine-encoded text for the benefit of linguistic research. This tool was necessary to implement, since these rare and peripheral prints did often include already perished characters, which are sadly neglected by the modern OCR software developers, but belong to the historical context of kindred languages and thus are an essential part of the linguistic heritage (van Hemel, 2014). Our crowdsourcing tool application is essentially an editor of Alto XML format. It consists of a back-end for managing users, permissions, and files, communicating through a REST API with a front-end interface—that is, the actual editor for correcting the OCRed text. The enhanced XML files can be retrieved from the Fenno-Ugrica collection for further purposes. Could the crowd do this work to support the academic research? The challenge in crowdsourcing lies in its nature. The targets in the traditional crowdsourcing have often been split into several microtasks that do not require any special skills from the anonymous people, a faceless crowd. This way of crowdsourcing may produce quantitative results, but from the research’s point of view, there is a danger that the needs of linguists are not necessarily met. Also, the remarkable downside is the lack of shared goal or the social affinity. There is no reward in the traditional methods of crowdsourcing (de Boer et al., 2012). Also, there has been criticism that digital humanities makes the humanities too data-driven and oriented towards quantitative methods, losing the values of critical qualitative methods (Fish, 2012). And on top of that, the downsides of the traditional crowdsourcing become more imminent when you leave the Anglophone world. Our potential crowd is geographically scattered in Russia. This crowd is linguistically heterogeneous, speaking 17 different languages. In many cases languages are close to extinction or longing for language revitalization, and the native speakers do not always have Internet access, so an open call for crowdsourcing would not have produced appeasing results for linguists. Thus, one has to identify carefully the potential niches to complete the needed tasks. When using the help of a crowd in a project that is aiming to support both linguistic research and survival of endangered languages, the approach has to be a different one. In nichesourcing, the tasks are distributed amongst a small crowd of citizen scientists (communities). Although communities provide smaller pools to draw resources, their specific richness in skill is suited for complex tasks with high-quality product expectations found in nichesourcing. Communities have a purpose and identity, and their regular interaction engenders social trust and reputation. These communities can correspond to research more precisely (de Boer et al., 2012). Instead of repetitive and rather trivial tasks, we are trying to utilize the knowledge and skills of citizen scientists to provide qualitative results. In nichesourcing, we hand in such assignments that would precisely fill the gaps in linguistic research. A typical task would be editing and collecting the words in such fields of vocabularies where the researchers do require more information. For instance, there is lack of Hill Mari words and terminology in anatomy. We have digitized the books in medicine, and we could try to track the words related to human organs by assigning the citizen scientists to edit and collect words with the OCR editor. From the nichesourcing’s perspective, it is essential that altruism play a central role when the language communities are involved. In nichesourcing, our goal is to reach a certain level of interplay, where the language communities would benefit from the results. For instance, the corrected words in Ingrian will be added to an online dictionary, which is made freely available for the public, so the society can benefit, too. This objective of interplay can be understood as an aspiration to support the endangered languages and the maintenance of lingual diversity, but also as a servant of ‘two masters’: research and society.