2 resultados para Cell activation

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type 1diabetes (T1D) is an autoimmune disease, which is influenced by a variety of environmental factors including diet and microbes. These factors affect the homeostasis and the immune system of the gut. This thesis explored the altered regulation of the immune system and the development of diabetes in non-obese diabetic (NOD) mice. Inflammation in the entire intestine of diabetes-prone NOD mice was studied using a novel ex-vivo imaging system of reactive oxygen and nitrogen species (RONS), in relation to two feeding regimens. In parallel, gut barrier integrity and intestinal T-cell activation were assessed. Extra-intestinal manifestations of inflammation and decreased barrier integrity were sought for by studying peritoneal leukocytes. In addition, the role of pectin and xylan as dietary factors involved in diabetes development in NOD mice was explored. NOD mice showed expression of RONS especially in the distal small intestine, which coincided with T-cell activation and increased permeability to macromolecules. The introduction of a casein hydrolysate (hydrolysed milk protein) diet reduced these phenomena, altered the gut microbiota and reduced the incidence of T1D. Extra-intestinally, macrophages appeared in large numbers in the peritoneum of NOD mice after weaning. Peritoneal macrophages (PM) expressed high levels of interleukin-1 receptor associated kinase M (IRAK-M), which was indicative of exposure to ligands of toll-like receptor 4 (TLR-4) such as bacterial lipopolysaccharide (LPS). Intraperitoneal LPS injections activated T cells in the pancreatic lymph nodes (PaLN) and thus, therefore potentially could activate islet-specific T cells. Addition of pectin and xylan to an otherwise diabetes-retarding semisynthetic diet affected microbial colonization of newly-weaned NOD mice, disturbed gut homeostasis and promoted diabetes development. These results help us to understand how diet and microbiota impact the regulation of the gut immune system in a way that might promote T1D in NOD mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microenvironment within the tumor plays a central role in cellular signaling. Rapidly proliferating cancer cells need building blocks for structures as well as nutrients and oxygen for energy production. In normal tissue, the vasculature effectively transports oxygen, nutrient and waste products, and maintains physiological pH. Within a tumor however, the vasculature is rarely sufficient for the needs of tumor cells. This causes the tumor to suffer from lack of oxygen (hypoxia) and nutrients as well as acidification, as the glycolytic end product lactate is accumulated. Cancer cells harbor mutations enabling survival in the rough microenvironment. One of the best characterized mutations is the inactivation of the von Hippel-Lindau protein (pVHL) in clear cell renal cell carcinoma (ccRCC). Inactivation causes constitutive activation of hypoxia-inducible factor HIF which is an important survival factor regulating glycolysis, neovascularization and apoptosis. HIFs are normally regulated by HIF prolyl hydroxylases (PHDs), which in the presence of oxygen target HIF α-subunit to ubiquitination by pVHL and degradation by proteasomes. In my thesis work, I studied the role of PHDs in the survival of carcinoma cells in hypoxia. My work revealed an essential role of PHD1 and PHD3 in cell cycle regulation through two cyclin-dependent kinase inhibitors (CKIs) p21 and p27. Depletion of PHD1 or PHD3 caused a cell cycle arrest and subjected the carcinoma cells to stress and impaired the survival.