3 resultados para Cd4 Cells

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The term proteome is used to define the complete set of proteins expressed in cells or tissues of an organism at a certain timepoint. Respectively, proteomics is used to describe the methods, which are used to study such proteomes. These methods include chromatographic and electrophoretic techniques for protein or peptide fractionation, mass spectrometry for their identification, and use of computational methods to assist the complicated data analysis. A primary aim in this Ph.D. thesis was to set-up, optimize, and develop proteomics methods for analysing proteins extracted from T-helper (Th) lymphocytes. First, high-throughput LC-MS/MS and ICAT labeling methods were set-up and optimized for analysing the microsomal fraction proteins extracted from Th lymphocytes. Later, iTRAQ method was optimized to study cytokine regulated protein expression in the nuclei of Th lymphocytes. High-throughput LC-MS/MS analyses, like ICAT and iTRAQ, produce large quantities of data and robust software and data analysis pipelines are needed. Therefore, different software programs used for analysing such data were evaluated. Moreover, a pre-filtering algorithm was developed to classify good-quality and bad-quality spectra prior to the database searches. Th-lymphocytes can differentiate into Th1 or Th2 cells based on surrounding antigens, co-stimulatory molecules, and cytokines. Both subsets have individual cytokine secretion profiles and specific functions. Th1 cells participate in the cellular immunity against intracellular pathogens, while Th2 cells have important role in the humoral immunity against extracellular parasites. An abnormal response of Th1 and Th2 cells and imbalance between the subsets are charasteristic of several diseases. Th1 specific reactions and cytokines have been detected in autoimmune diseases, while Th2 specific response and cytokine profile is common in allergy and asthma. In this Ph. D. thesis mass spectrometry-based proteomics was used to study the effects of Th1 and Th2 promoting cytokines IL-12 and IL-4 on the proteome of Th lymphocytes. Characterization of microsomal fraction proteome extracted from IL-12 treated lymphobasts and IL-4 stimulated cord blood CD4+ cells resulted in finding of cytokine regulated proteins. Galectin-1 and CD7 were down-regulated in IL-12 treated cells, while IL-4 stimulation decreased the expression of STAT1, MXA, GIMAP1, and GIMAP4. Interestingly, the transcription of both GIMAP genes was up-regulated in Th1 polarized cells and down-regulated in Th2 promoting conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cells are the key players in the development of type 1 diabetes (T1D), mediating autoimmune reactions leading to the destruction of insulin producing beta cells in the islets. We aimed to analyze the role of different T-cell subtypes in the autoimmunity and pathogenesis of T1D. The frequency of islet antigen-specific (GAD65-, proinsulin-, and insulin-specific) CD4+ T cells was investigated in vitro in T1D patients, at-risk individuals (diabetes-associated autoantibody positive), and in controls, using MHC class II tetramers. An overall higher frequency of CD4+ T-cells recognizing the GAD65 555−567 peptide was detected in at-risk individuals. In addition, increased CD4+ T-cell responses to the same GAD65 epitope displaying a memory phenotype were observed in at-risk and diabetic children, which demonstrate a previous encounter with the antigen in vivo. Avidity and phenotypic differences were also observed among CD4+ T-cell clones induced by distinct doses of GAD65 autoantigen. T-cell clones generated at the lowest peptide dose displayed the highest avidity and expressed more frequently the TCR Vβ5.1 chain than low-avidity T cells. These findings raise attention to the antigen dose when investigating the diversity of antigen-specific T cells. Furthermore, an increased regulatory response during the preclinical phase of T1D was also found in genetically at-risk children. Higher frequencies of regulatory T (Treg) cells (CD4+CD25high HLA-DR-/CD69-) and natural killer T (NKT) cells (CD161+Vbeta11+) were observed in children with multiple autoantibodies compared to autoantibody-negative controls. Taken together, these data showed increased frequency of islet-specific CD4+ T-cells, especially to the GAD65 555-567 epitope, and Treg and NKT cell upregulation in children at-risk for T1D, suggesting their importance in T1D pathogenesis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated T helper (Th) cells have ability to differentiate into functionally distinct Th1, Th2 and Th17 subsets through a series of overlapping networks that include signaling and transcriptional control and the epigenetic mechanisms to direct immune responses. However, inappropriate execution in the differentiation process and abnormal function of these Th cells can lead to the development of several immune mediated diseases. Therefore, the thesis aimed at identifying genes and gene regulatory mechanisms responsible for Th17 differentiation and to study epigenetic changes associated with early stage of Th1/Th2 cell differentiation. Genome wide transcriptional profiling during early stages of human Th17 cell differentiation demonstrated differential regulation of several novel and currently known genes associated with Th17 differentiation. Selected candidate genes were further validated at protein level and their specificity for Th17 as compared to other T helper subsets was analyzed. Moreover, combination of RNA interference-mediated downregulation of gene expression, genome-wide transcriptome profiling and chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq), combined with computational data integration lead to the identification of direct and indirect target genes of STAT3, which is a pivotal upstream transcription factor for Th17 cell polarization. Results indicated that STAT3 directly regulates the expression of several genes that are known to play a role in activation, differentiation, proliferation, and survival of Th17 cells. These results provide a basis for constructing a network regulating gene expression during early human Th17 differentiation. Th1 and Th2 lineage specific enhancers were identified from genome-wide maps of histone modifications generated from the cells differentiating towards Th1 and Th2 lineages at 72h. Further analysis of lineage-specific enhancers revealed known and novel transcription factors that potentially control lineage-specific gene expression. Finally, we found an overlap of a subset of enhancers with SNPs associated with autoimmune diseases through GWASs suggesting a potential role for enhancer elements in the disease development. In conclusion, the results obtained have extended our knowledge of Th differentiation and provided new mechanistic insights into dysregulation of Th cell differentiation in human immune mediated diseases.