4 resultados para Causal Tree Method
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Abstract
Resumo:
Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.
Resumo:
The future of privacy in the information age is a highly debated topic. In particular, new and emerging technologies such as ICTs and cognitive technologies are seen as threats to privacy. This thesis explores images of the future of privacy among non-experts within the time frame from the present until the year 2050. The aims of the study are to conceptualise privacy as a social and dynamic phenomenon, to understand how privacy is conceptualised among citizens and to analyse ideal-typical images of the future of privacy using the causal layered analysis method. The theoretical background of the thesis combines critical futures studies and critical realism, and the empirical material is drawn from three focus group sessions held in spring 2012 as part of the PRACTIS project. From a critical realist perspective, privacy is conceptualised as a social institution which creates and maintains boundaries between normative circles and preserves the social freedom of individuals. Privacy changes when actors with particular interests engage in technology-enabled practices which challenge current privacy norms. The thesis adopts a position of technological realism as opposed to determinism or neutralism. In the empirical part, the focus group participants are divided into four clusters based on differences in privacy conceptions and perceived threats and solutions. The clusters are fundamentalists, pragmatists, individualists and collectivists. Correspondingly, four ideal-typical images of the future are composed: ‘drift to low privacy’, ‘continuity and benign evolution’, ‘privatised privacy and an uncertain future’, and ‘responsible future or moral decline’. The images are analysed using the four layers of causal layered analysis: litany, system, worldview and myth. Each image has its strengths and weaknesses. The individualistic images tend to be fatalistic in character while the collectivistic images are somewhat utopian. In addition, the images have two common weaknesses: lack of recognition of ongoing developments and simplistic conceptions of privacy based on a dichotomy between the individual and society. The thesis argues for a dialectical understanding of futures as present images of the future and as outcomes of real processes and mechanisms. The first steps in promoting desirable futures are the awareness of privacy as a social institution, the awareness of current images of the future, including their assumptions and weaknesses, and an attitude of responsibility where futures are seen as the consequences of present choices.