2 resultados para Cathodes
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Chemical coagulation is commonly used in raw water and wastewater treatment plants for the destabilisation of pollutants so that they can be removed in the subsequent separation processes. The most commonly used coagulation chemicals are aluminium and iron metal salts. Electrocoagulation technology has also been proposed for the treatment of raw waters and wastewaters. With this technology, metal cations are produced on the electrodes via electrolysis and these cations form various hydroxides in the water depending on the water pH. In addition to this main reaction, several side reactions, such as hydrogen bubble formation and the reduction of metals on cathodes, also take place in the cell. In this research, the applications of electrocoagulation were investigated in raw water treatment and wastewater applications. The surface water used in this research contained high concentrations of natural organic matter (NOM). The effect of the main parameters – current density, initial pH, electric charge per volume, temperature and electrolysis cell construction – on NOM removal were investigated. In the wastewater treatment studies, the removal of malodorous sulphides and toxic compounds from the wastewaters and debarking effluents were studied. Also, the main parameters of the treatment, such as initial pH and current density, were investigated. Aluminium electrodes were selected for the raw water treatment, whereas wastewaters and debarking effluent were treated with iron electrodes. According to results of this study, aluminium is more suitable electrode material for electrocoagulation applications because it produces Al(III) species. Metal ions and hydroxides produced by iron electrodes are less effective in the destabilisation of pollutants because iron electrodes produce more soluble and less charged Fe(II) species. However, Fe(II) can be effective in some special applications, such as sulphide removal. The resulting metal concentration is the main parameter affecting destabilisation of pollutants. Current density, treatment time, temperature and electrolysis cell construction affect the dissolution of electrodes and hence also the removal of pollutants. However, it seems that these parameters have minimal significance in the destabilization of the pollutants besides this effect (in the studied range of parameters). Initial pH and final pH have an effect on the dissolution of electrodes, but they also define what aluminium or iron species are formed in the solution and have an effect on the ζ-potential of all charged species in the solution. According to the results of this study, destabilisation mechanisms of pollutants by electrocoagulation and chemical coagulation are similar. Optimum DOC removal and low residual aluminium can be obtained simultaneously with electrocoagulation, which may be a significant benefit of electrocoagulation in surface water treatment compared to chemical coagulation. Surface water treatment with electrocoagulation can produce high quality water, which could be used as potable water or fresh water for industrial applications. In wastewater treatment applications, electrocoagulation can be used to precipitate malodorous sulphides to prevent their release into air. Technology seems to be able to remove some toxic pollutants from wastewater and could be used as pretreatment prior to treatment at a biological wastewater treatment plant. However, a thorough economic and ecological comparison of chemical coagulation and electrocoagulation is recommended, because these methods seem to be similar in pollutant destabilisation mechanisms, metal consumption and removal efficiency in most applications.
Resumo:
Kuudenarvoista kromia käytetään natriumkloraatin valmistuksessa prosessin tuotantotehokkuuden ja turvallisuuden parantamiseksi. Kromia kuitenkin poistuu prosessista muutamaa reittiä pitkin. Koska kuuudenarvoisella kromilla on syöpää aiheuttavia, mutageenisiä sekä lisääntymiselle myrkyllisiä ominaisuuksia, olisi tärkeää ymmärtää, miten kromi kulkeutuu prosessin eri osiin, ja kuinka paljon sitä poistuu prosessista. Tämä on tärkeää, jotta osataan hallita kromin käytöstä aiheutuvat riskit, sekä toisaalta myös tehostaa kromin käyttöä prosessissa. Työn tarkoituksena oli tuottaa tietoa kromin käytöstä natriumkloraattiprosessissa. Työssä tutkittiin kromitasetta prosessin keskeisimmissä yksikköoperaatioissa. Myös kromin saostumista katodien pinnalle arvioitiin määrällisesti. Eri prosessinäytteistä tutkittiin lisäksi kromin hapetusasteita. Edellä mainittuja tutkimuskohteita varten määritettiin prosessinäytteiden kromipitoisuus. Eri prosessioperaatioille suoritettiin lisäksi taselaskelmat. Työn tuloksena esitettiin kromitase sekä yksikköoperaatioille että koko prosessille. Erinäisten epätarkkuustekijöiden vuoksi tasetta ei kuitenkaan pystytty määrittämään halutulla tarkkuudella, ja siksi työssä esitettyä tasetta voidaan pitää vain suuntaa antavana laskelmana. Katodien pinnalle saostunutta kromin määrää pidettiin kuitenkin oikean suuruusluokan tuloksena. Prosessinäytteiden hapetusasteita ei voitu arvioida, sillä saadut kokonaiskromitulokset eivät olleet täysin luotettavia. Huolimatta tulosten epätarkkuudesta, työ tuotti tärkeää tietoa prosessin toiminnasta kromin suhteen. Työtä voidaan hyödyntää jatkossa monin tavoin prosessin kromitaseen seurannassa.