10 resultados para Cartilage-on-bone laminate

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of load-bearing osseous implant with desired mechanical and surface properties in order to promote incorporation with bone and to eliminate risk of bone resorption and implant failure is a very challenging task. Bone formation and resoption processes depend on the mechanical environment. Certain stress/strain conditions are required to promote new bone growth and to prevent bone mass loss. Conventional metallic implants with high stiffness carry most of the load and the surrounding bone becomes virtually unloaded and inactive. Fibre-reinforced composites offer an interesting alternative to metallic implants, because their mechanical properties can be tailored to be equal to those of bone, by the careful selection of matrix polymer, type of fibres, fibre volume fraction, orientation and length. Successful load transfer at bone-implant interface requires proper fixation between the bone and implant. One promising method to promote fixation is to prepare implants with porous surface. Bone ingrowth into porous surface structure stabilises the system and improves clinical success of the implant. The experimental part of this work was focused on polymethyl methacrylate (PMMA) -based composites with dense load-bearing core and porous surface. Three-dimensionally randomly orientated chopped glass fibres were used to reinforce the composite. A method to fabricate those composites was developed by a solvent treatment technique and some characterisations concerning the functionality of the surface structure were made in vitro and in vivo. Scanning electron microscope observations revealed that the pore size and interconnective porous architecture of the surface layer of the fibre-reinforced composite (FRC) could be optimal for bone ingrowth. Microhardness measurements showed that the solvent treatment did not have an effect on the mechanical properties of the load-bearing core. A push-out test, using dental stone as a bone model material, revealed that short glass fibre-reinforced porous surface layer is strong enough to carry load. Unreacted monomers can cause the chemical necrosis of the tissue, but the levels of leachable resisidual monomers were considerably lower than those found in chemically cured fibre-reinforced dentures and in modified acrylic bone cements. Animal experiments proved that surface porous FRC implant can enhance fixation between bone and FRC. New bone ingrowth into the pores was detected and strong interlocking between bone and the implant was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica based biomaterials, such as melt-derived bioactive glasses and sol-gel glasses, have been used for a long time in bone healing applications because of their ability to form hydroxyapatite and to stimulate stem cell proliferation and differentiation. In this study, bone marrow derived cells were cultured with bioactive glass and sol-gel silica, and seeded into porous polymer composite scaffolds that were then implanted femorally and subcutaneously in rats to monitor their migration inside host tissue. Bone marrow derived cells were also injected intraperitoneally. Transplanted cells migrated to various tissues inside the host, including the lung, liver spleen, thymus and bone marrow. The method of transplantation affected the time frame of cell migration, with intraperitoneal injection being the fastest and femoral implantation the slowest, but not the target tissues of migration. Transplanted donor cells had a limited lifetime in the host and were later eliminated from all tested tissues. Bioactive glass, however, affected the implanted cells negatively. When it was present in the scaffold no donor cells were found in any of the tested host tissues. Bioactive glass S53P4 was found to support both osteoblastic and osteoclastic phenotype of bone marrow derived cells, but it was resistant to the resorbing effect of osteoclastic bone marrow derived cells, showing that bioactive glass is rather dissolved through physicochemical reactions than resorbed by cells. Fast-dissolving silica sol gel in microparticulate form was found to increase collagen formation by bone marrow derived cells, while slow dissolving silica microparticles enhanced their proliferation, suggesting that the dissolution rate of silica controls the response of bone marrow derived cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this doctoral thesis, a tomographic STED microscopy technique for 3D super-resolution imaging was developed and utilized to observebone remodeling processes. To improve upon existing methods, wehave used a tomographic approach using a commercially available stimulated emission depletion (STED) microscope. A certain region of interest (ROI) was observed at two oblique angles: one at a standard inverted configuration from below (bottom view) and another from the side (side view) via a micro-mirror positioned close to the ROI. The two viewing angles were reconstructed into a final tomogram. The technique, named as tomographic STED microscopy, was able to achieve an axial resolution of approximately 70 nm on microtubule structures in a fixed biological specimen. High resolution imaging of osteoclasts (OCs) that are actively resorbing bone was achieved by creating an optically transparent coating on a microscope coverglass that imitates a fractured bone surface. 2D super-resolution STED microscopy on the bone layer showed approximately 60 nm of lateral resolution on a resorption associated organelle allowing these structures to be imaged with super-resolution microscopy for the first time. The developed tomographic STED microscopy technique was further applied to study resorption mechanisms of OCs cultured on the bone coating. The technique revealed actin cytoskeleton with specific structures, comet-tails, some of which were facing upwards and some others were facing downwards. This, in our opinion, indicated that during bone resorption, an involvement of the actin cytoskeleton in vesicular exocytosis and endocytosis is present. The application of tomographic STED microscopy in bone biology demonstrated that 3D super-resolution techniques can provide new insights into biological 3D nano-structures that are beyond the diffraction-limit when the optical constraints of super-resolution imaging are carefully taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstruction of defects in the craniomaxillofacial (CMF) area has mainly been based on bone grafts or metallic fixing plates and screws. Particularly in the case of large calvarial and/or craniofacial defects caused by trauma, tumours or congenital malformations, there is a need for reliable reconstruction biomaterials, because bone grafts or metallic fixing systems do not completely fulfill the criteria for the best possible reconstruction methods in these complicated cases. In this series of studies, the usability of fibre-reinforced composite (FRC) was studied as a biostable, nonmetallic alternative material for reconstructing artificially created bone defects in frontal and calvarial areas of rabbits. The experimental part of this work describes the different stages of the product development process from the first in vitro tests with resin-impregnated fibrereinforced composites to the in vivo animal studies, in which this FRC was tested as an implant material for reconstructing different size bone defects in rabbit frontal and calvarial areas. In the first in vitro study, the FRC was polymerised in contact with bone or blood in the laboratory. The polymerised FRC samples were then incubated in water, which was analysed for residual monomer content by using high performance liquid chromatography (HPLC). It was found that this in vitro polymerisation in contact with bone and blood did not markedly increase the residual monomer leaching from the FRC. In the second in vitro study, different adhesive systems were tested in fixing the implant to bone surface. This was done to find an alternative implant fixing system to screws and pins. On the basis of this study, it was found that the surface of the calvarial bone needed both mechanical and chemical treatments before the resinimpregnated FRC could be properly fixed onto it. In three animal studies performed with rabbit frontal bone defects and critical size calvarial bone defect models, biological responses to the FRC implants were evaluated. On the basis of theseevaluations, it can be concluded that the FRC, based on E-glass (electrical glass) fibres forming a porous fibre veil enables the ingrowth of connective tissues to the inner structures of the material, as well as the bone formation and mineralization inside the fibre veil. Bone formation could be enhanced by using bioactive glass granules fixed to the FRC implants. FRC-implanted bone defects healed partly; no total healing of defects was achieved. Biological responses during the follow-up time, at a maximum of 12 weeks, to resin-impregnated composite implant seemed to depend on the polymerization time of the resin matrix of the FRC. Both of the studied resin systems used in the FRC were photopolymerised and the heat-induced postpolymerisation was used additionally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adolescence is an important time for acquiring high peak bone mass. Physical activity is known to be beneficial to bone development. The effect of estrogen-progestin contraceptives (EPC) is still controversial. Altogether 142 (52 gymnasts, 46 runners, and 42 controls) adolescent women participated in this study, which is based on two 7-year (n =142), one 6-year (n =140) and one 4-year (n =122) follow-ups. Information on physical activity, menstrual history, sexual maturation, nutrition, living habits and health status was obtained through questionnaires and interviews. The bone mineral density (BMD) and content (BMC) of lumbar spine (LS) and femoral neck (FN) were measured by dual- energy X-ray absoptiometry. Calcaneal sonographic measurements were also made. The physical activity of the athletes participating in this study decreased after 3-year follow-up. High-impact exercise was beneficial to bones. LS and FN BMC was higher in gymnasts than in controls during the follow-up. Reduction in physical activity had negative effects on bone mass. LS and FN BMC increased less in the group having reduced their physical activity more than 50%, compared with those continuing at the previous level (1.69 g, p=0.021; 0.14 g, p=0.015, respectively). The amount of physical activity was the only significant parameter accounting for the calcaneal sonography measurements at 6-year follow-up (11.3%) and reduced activity level was associated with lower sonographic values. Long-term low-dose EPC use seemed to prevent normal bone mass acquisition. There was a significant trend towards a smaller increase in LS and FN BMC among long-term EPC users. In conclusion, this study confirms that high-impact exercise is beneficial to bones and that the benefits are partly maintained even after a clear reduction in training level at least for 4 years. Continued exercise is needed to retain all acquired benefits. The bone mass gained and maintained can possibly be maximized in adolescence by implementing high-impact exercise for youngsters. The peak bone mass of the young women participating in the study may be reached before the age of 20. Use of low-dose EPCs seems to suppress normal bone mass acquisition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calcified tissues, comprising bone and cartilage, are metabolically active tissues that bind and release calcium, bicarbonate and other substances according to systemic needs. Understanding the regulation of cellular metabolism in bone and cartilage is an important issue, since a link between the metabolism and diseases of these tissues is clear. An essential element in the function of bone-resorbing osteoclasts, namely regulation of bicarbonate transport, has not yet been thoroughly studied. Another example of an important but at the same time fairly unexplored subject of interest in this field is cartilage degeneration, an important determinant for development of osteoarthritis. The link between this and oxidative metabolism has rarely been studied. In this study, we have investigated the significance of bicarbonate transport in osteoclasts. We found that osteoclasts possess several potential proteins for bicarbonate transport, including carbonic anhydrase IV and XIV, and an electroneutral bicarbonate co-transporter NBCn1. We have also shown that inhibiting the function of these proteins has a significant impact on bone resorption and osteoclast morphology. Furthermore, we have explored oxidative metabolism in chondrocytes and found that carbonic anhydrase III (CA III), a protein linked to the prevention of protein oxidation in muscle cells, is also present in mouse chondrocytes, where its expression correlates with the presence of reactive oxygen species. Thus, our study provides novel information on the regulation of cellular metabolism in calcified tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bone engineering is a rapidly developing area of reconstructive medicine where bone inducing factors and/or cells are combined with a scaffold material to regenerate the structure and function of the original tissue. The aim of this study was to compare the suitability of different macroporous scaffold types for bone engineering applications. The two scaffold categories studied were a) the mechanically strong and stable titanium fiber meshes and b) the elastic and biodegradable porous polymers. Furthermore, bioactive modifications were applied to these basic scaffold types, and their effect on the osteogenic responses was evaluated in cell culture and ectopic bone formation studies. The osteogenic phenotype of cultured cell-scaffold constructs was heightened with a sol-gel derived titania coating, but not with a mixed titania-silica coating. The latter coating also resulted in delayed ectopic bone formation in bone marrow stromal cell seeded scaffolds. However, the better bone contact in early implantation times and more even bone tissue distribution at later times indicated enhanced osteoconductivity of both the coated scaffold types. Overall, the most promising bone engineering results were obtained with titania coated fiber meshes. Elastic and biodegradable poly(ε-caprolactone/D,L-lactide) based scaffolds were also developed in this study. The degradation rates of the scaffolds in vitro were governed by the hydrophilicity of the polymer matrix, and the porous architecture was controlled by the amount and type of porogen used. A continuous phase macroporosity was obtained using a novel CaCl2 • 6H2O porogen. Dynamic culture conditions increased cell invasion, but decreased cell numbers and osteogenicity, within the scaffolds. Osteogenic differentiation in static cultures and ectopic bone formation in cell seeded scaffolds were enhanced in composites, with 30 wt-% of bioactive glass filler.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neurofibromatosis 1 (NF1) is an autosomal dominant hereditary syndrome, affecting skin, neural tissues and skeleton. Hallmarks of NF1 include benign cutaneous neurofibroma tumors, pigmentation lesions on the skin and in the iris, learning disabilities and predisposition to selected malignancies. Low bone mineral density (BMD) and osteopenia/osteoporosis are common in NF1. Osteoporosis is a systemic disorder characterized by low bone mineral density and increased fracture risk. Treatment of osteoporosis aims to prevent falls and decrease fracture risk. Osteoporosis is diagnosed in adults by measuring BMD and evaluating clinical risk factors of the patient. Bone turnover is a process of old bone resorbed by osteoclasts and new bone formed by osteoblasts. Multinuclear osteoclasts are derived from osteoclast progenitors, which can be isolated from peripheral blood. Osteoclast progenitors were isolated from 17 NF1 patients and healthy controls, and cultured in vitro to osteoclasts. NF1 osteoclasts are hyperactive, displaying increased differentiation and resorption capacity, abnormal morphology and tolerance to serum deprivation compared to control osteoclasts. These findings expanded the study to evaluate the effects of bisphosphonates, drugs designed to treat osteoporosis, in osteoclasts derived from blood samples of 20 NF1 and control persons. The number of control osteoclasts was expectedly reduced after bisphosphonate treatment. However, NF1 osteoclasts tolerated the apoptotic effect of alendronate, zoledronic acid and clodronate in vitro compared to controls. NF1-related osteoporosis was found in ~20 % of the patients, and selected laboratory parameters were measured. Patients with NF1 have increased levels of serum CTX and PINP, reflecting increased bone turnover in vivo. BMD decreases progressively in NF1 as evaluated in 19 NF1 patients 12 years after their initial BMD measurement. Patients with NF1-related osteopenia often progress to osteoporosis. This was found in patients aged 37-76.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-metallic implants made of bioresorbable or biostable synthetic polymers are attractive options in many surgical procedures, ranging from bioresorbable suture anchors of arthroscopic surgery to reconstructive skull implants made of biostable fiber-reinforced composites. Among other benefits, non-metallic implants produce less interference in imaging. Bioresorbable polymer implants may be true multifunctional, serving as osteoconductive scaffolds and as matrices for simultaneous delivery of bone enhancement agents. As a major advantage for loading conditions, mechanical properties of biostable fiber-reinforced composites can be matched with those of the bone. Unsolved problems of these biomaterials are related to the risk of staphylococcal biofilm infections and to the low osteoconductivity of contemporary bioresorbable composite implants. This thesis was focused on the research and development of a multifunctional implant model with enhanced osteoconductivity and low susceptibility to infection. In addition, the experimental models for assessment, diagnostics and prophylaxis of biomaterial-related infections were established. The first experiment (Study I) established an in vitro method for simultaneous evaluation of calcium phosphate and biofilm formation on bisphenol-Aglycidyldimethacrylate and triethylenglycoldimethacrylate (BisGMA-TEGDMA) thermosets with different content of bioactive glass 45S5. The second experiment (Study II) showed no significant difference in osteointegration of nanostructured and microsized polylactide-co-glycolide/β-tricalcium phosphate (PLGA /β-TCP) composites in a minipig model. The third experiment (Study III) demonstrated that positron emission tomography (PET) imaging with the novel 68Ga labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) CD33 related sialic-acid immunoglobulin like lectins (Siglec-9) tracer was able to detect inflammatory response to S. epidermidis and S. aureus peri-implant infections in an intraosseous polytetrafluoroethylene catheter model. In the fourth experiment (Study IV), BisGMATEGDMA thermosets coated with lactose-modified chitosan (Chitlac) and silver nanoparticles exhibited antibacterial activity against S. aureus and P. aeruginosa strains in an in vitro biofilm model and showed in vivo biocompatibility in a minipig model. In the last experiment (Study V), a selective androgen modulator (SARM) released from a poly(lactide)-co-ε-caprolactone (PLCL) polymer matrix failed to produce a dose-dependent enhancement of peri-implant osteogenesis in a bone marrow ablation model.