12 resultados para Calotte-cell structure
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tämän diplomityön tavoitteena oli suunnitella miehistönkuljetusajoneuvon runko. Rungosta suunniteltiin mahdollisimman hyvin energiaa absorboiva. Rakenne toteutettiin kennora-kenteena. Suunnittelussa sovellettiin koneensuunnittelun periaatteiden lisäksi energiaa ab-sorboivien rakenteiden suunnittelun periaatteita. Myös valmistustekniset näkökohdat otet-tiin huomioon. Rakenteessa hyödynnettiin Ruukki Oy:n Ramor 500 suojausterästä sekä OPTIM 500 MC terästä. Lisäksi erilaisten täyteaineiden käyttöä tutkittiin. Suunnittelun työkaluna käytettiin epälineaarista elementtimenetelmää, koska energiaa ab-sorboivien rakenteiden suunnittelussa on otettava huomioon materiaalien epälineaarinen käyttäytyminen. Rakenteen suunnittelu jakaantui viiteen vaiheeseen. Aluksi rakenteeseen kohdistuvat kuormitukset laskettiin elementtimenetelmän avulla. Esisuunnittelussa lasket-tiin plastisuusteorian avulla alustavasti tarvittavat materiaalipaksuudet. Tämän jälkeen ra-kenteen ydingeometria optimoitiin mahdollisimman hyvin energiaa absorboivaksi. Opti-moinnissa hyödynnettiin elementtimenetelmää. Seuraavassa vaiheessa varmistettiin raken-teen globaalit ominaisuudet. Lopuksi rakenteen kestävyyttä tarkasteltiin elementtimene-telmällä. Runko ei mallien mukaan kestänyt siltä vaadittuja kuormitustapauksia. Mallin kaikki ole-tukset pidettiin varmalla puolella. Reunaehdot oletettiin todellisuutta jäykemmiksi. Myös-kään materiaalin venymänopeudesta johtuvaa lujittumista ei otettu huomioon. Koska mii-naräjähdys on monimutkainen tapahtuma, rungon todellinen kestävyys joudutaan ar-viomaan räjähdystesteillä. Elementtimallien perusteella voidaan kuitenkin sanoa, että ener-giaa absorboiva ajoneuvon runko on mahdollista toteuttaa kennorakenteena. Lisäksi voi-daan todeta, että elementtimenetelmää sopii työvälineeksi tämän tyyppisten rakenteiden suunnitteluun.
Resumo:
Korkean IP-luokituksen ohutlevykotelointi on haastava kokonaisuus. Koteloinnin tiivistys ruiskutettavalla polyureapinnoitteella edellyttää usean osa-alueen samanaikaista hallintaa. Kotelo on alusta alkaen suunniteltava pinnoitettavaksi, sillä pinnoitus asettaa lukuisia vaatimuksia ja rajoituksia esimerkiksi käytettäville muodoille, rakenteille ja liittämismenetelmille. Polyurea on elastomeeri, josta valmistettua pinnoitetta voidaan levittää erityisellä ruiskutuslaitteistolla. Polyureapinnoite sallii kotelon asentamisen vaikeisiin olosuhteisiin, sillä se kestää kemikaaleja, kulutusta ja iskuja sekä tarjoaa tiiveyden lisäksi korroosiosuojan koteloinnille. Pinnoitteen ominaisuuksia, kuten kovuutta, elastisuutta ja kemikaalien sekä UV-säteilyn kestoa voidaan räätälöidä käyttökohteen mukaan. Polyurepinnoitteeella pinnoitettavat pinnat on pyrittävä pitämään mahdollisimman yksinkertaisina, mikä tarkoittaa käytännössä kaikenlaisten kohoumien, ulkonevien osien, reikien ja muiden epäjatkuvuuskohtien välttämistä. Kaikki epäjatkuvuuskohdat vaativat erityishuomiota pinnoituksen aikana, sillä epäjatkuvuuskohtien onnistunut pinnoitus vaatii ruiskutusta useasta suunnasta, mikä lisää virhemahdollisuuksia ja siten vaarantaa koteloinnin tiiveyden. Liittämismenetelmät ovat yksinkertaisten muotojen ohella avainasemassa pinnoituksen onnistumisen kannalta. Menetelmistä tulee suosia sellaisia, joiden pinnoitettavaan pintaan aiheuttama epäjatkuvuuskohta on mahdollisimman vähäinen. Tällaisia menetelmiä ovat esimerkiksi vastuspistehitsaus ja puristeruuvi.
Resumo:
Bone engineering is a rapidly developing area of reconstructive medicine where bone inducing factors and/or cells are combined with a scaffold material to regenerate the structure and function of the original tissue. The aim of this study was to compare the suitability of different macroporous scaffold types for bone engineering applications. The two scaffold categories studied were a) the mechanically strong and stable titanium fiber meshes and b) the elastic and biodegradable porous polymers. Furthermore, bioactive modifications were applied to these basic scaffold types, and their effect on the osteogenic responses was evaluated in cell culture and ectopic bone formation studies. The osteogenic phenotype of cultured cell-scaffold constructs was heightened with a sol-gel derived titania coating, but not with a mixed titania-silica coating. The latter coating also resulted in delayed ectopic bone formation in bone marrow stromal cell seeded scaffolds. However, the better bone contact in early implantation times and more even bone tissue distribution at later times indicated enhanced osteoconductivity of both the coated scaffold types. Overall, the most promising bone engineering results were obtained with titania coated fiber meshes. Elastic and biodegradable poly(ε-caprolactone/D,L-lactide) based scaffolds were also developed in this study. The degradation rates of the scaffolds in vitro were governed by the hydrophilicity of the polymer matrix, and the porous architecture was controlled by the amount and type of porogen used. A continuous phase macroporosity was obtained using a novel CaCl2 • 6H2O porogen. Dynamic culture conditions increased cell invasion, but decreased cell numbers and osteogenicity, within the scaffolds. Osteogenic differentiation in static cultures and ectopic bone formation in cell seeded scaffolds were enhanced in composites, with 30 wt-% of bioactive glass filler.
Resumo:
The nucleus is a membrane enclosed organelle containing most of the genetic information of the cell in the form of chromatin. The nucleus, which can be divided into many sub-organelles such as the nucleoli, the Cajal bodies and the nuclear lamina, is the site for several essential cellular functions such as the DNA replication and its regulation and most of the RNA synthesis and processing. The nucleus is often affected in disease: the size and the shape of the nucleus, the chromatin distribution and the size of the nucleoli have remained the basis for the grading of several cancers. The maintenance of the vertebrate body shape depends on the skeleton. Similarly, in a smaller context, the shape of the cell and the nucleus are mainly regulated by the cytoskeletal and nucleoskeletal elements. The nuclear matrix, which by definition is a detergent, DNase and salt resistant proteinaceous nuclear structure, has been suggested to form the nucleoskeleton responsible for the nuclear integrity. Nuclear mitotic apparatus protein, NuMA, a component of the nuclear matrix, is better known for its mitotic spindle organizing function. NuMA is one of the nuclear matrix proteins suggested to participate in the maintenance of the nuclear integrity during interphase but its interphase function has not been solved to date. This thesis study concentrated on the role of NuMA and the nuclear matrix as structural and functional components of the interphase nucleus. The first two studies clarified the essential role of caspase-3 in the disintegration of the nuclear structures during apoptosis. The second study also showed NuMA and chromatin to co-elute from cells in significant amounts and the apoptotic cleavage of NuMA was clarified to have an important role in the dissociation of NuMA from the chromatin. The third study concentrated on the interphase function of NuMA showing NuMA depletion to result in cell cycle arrest and the cytoplasmic relocalization of NuMA interaction partner GAS41. We suggest that the relocalization of the transcription factor GAS41 may mediate the cell cycle arrest. Thus, this study has given new aspects in the interactions of NuMA, chromatin and the nuclear matrix.
Resumo:
The currently used forms of cancer therapy are associated with drug resistance and toxicity to healthy tissues. Thus, more efficient methods are needed for cancer-specific induction of growth arrest and programmed cell death, also known as apoptosis. Therapeutic forms of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) are investigated in clinical trials due to the capability of TRAIL to trigger apoptosis specifically in cancer cells by activation of cell surface death receptors. Many tumors, however, have acquired resistance to TRAIL-induced apoptosis and sensitizing drugs for combinatorial treatments are, therefore, in high demand. This study demonstrates that lignans, natural polyphenols enriched in seeds and cereal, have a remarkable sensitizing effect on TRAIL-induced cell death at non-toxic lignan concentrations. In TRAIL-resistant and androgen-dependent prostate cancer cells we observe that lignans repress receptor tyrosine kinase (RTK) activity and downregulate cell survival signaling via the Akt pathway, which leads to increased TRAIL sensitivity. A structure-activity relationship analysis reveals that the γ-butyrolactone ring of the dibenzylbutyrolactone lignans is essential for the rapidly reversible TRAIL-sensitizing activity of these compounds. Furthermore, the lignan nortrachelogenin (NTG) is identified as the most efficient of the 27 tested lignans and norlignans in sensitization of androgen-deprived prostate cancer cells to TRAIL-induced apoptosis. While this combinatorial anticancer approach may leave normal cells unharmed, several efficient cancer drugs are too toxic, insoluble or unstable to be used in systemic therapy. To enable use of such drugs and to protect normal cells from cytotoxic effects, cancer-targeted drug delivery vehicles of nanometer scale have recently been generated. The newly developed nanoparticle system that we tested in vitro for cancer cell targeting combines the efficient drug-loading capacity of mesoporous silica to the versatile particle surface functionalization of hyperbranched poly(ethylene imine), PEI. The mesoporous hybrid silica nanoparticles (MSNs) were functionalized with folic acid to promote targeted internalization by folate receptor overexpressing cancer cells. The presented results demonstrate that the developed carrier system can be employed in vitro for cancer selective delivery of adsorbed or covalently conjugated molecules and furthermore, for selective induction of apoptotic cell death in folate receptor expressing cancer cells. The tested carrier system displays potential for simultaneous delivery of several anticancer agents specifically to cancer cells also in vivo.
Resumo:
Matrix metalloproteinase-13 (MMP-13) is a potent proteolytic enzyme, whose expression has been previously associated with fetal bone development and postnatal bone remodeling and with adult gingival wound healing. MMP-13 is also known to be involved in the growth and invasion of various cancers including squamous cell carcinoma (SCC) of the skin. The aim of this study was to further elucidate the function and regulation of MMP-13 in wound repair and cancer. In this study, it was shown that fetal skin fibroblasts express MMP-13 in response to transforming growth factor-β in a p38 MAP kinase dependent manner. In addition, MMP-13 was found to be expressed in vivo by wound fibroblasts in human fetal skin grafted on SCID mice. Adenovirally delivered expression of MMP-13 enhanced collagen matrix contraction by fibroblasts in vitro in association with altered cytoskeletal structure, enhanced proliferation and survival. These results indicate that MMP-13 is involved in cell-mediated collagen matrix remodeling and suggest a role for MMP-13 in superior matrix remodeling and scarless healing of fetal skin wounds. Using an MMP-13 deficient mouse strain, it was shown that MMP-13 is essential for the normal development of experimental granulation tissue in mice. MMP-13 was implicated in the regulation of myofibroblast function and angiogenesis and the expression of genes involved in cellular proliferation and movement, immune response, angiogenesis and proteolysis. Finally, epidermal mitogen, keratinocyte growth factor (KGF) was shown to suppress the malignant properties of skin SCC cells by downregulating the expression of several target genes with potential cancer promoting properties, including MMP-13, and by reducing SCC cell invasion. These results provide evidence that MMP-13 potently regulates cell viability, myofibroblast function and angiogenesis associated with wound healing and cancer. In addition, fibroblasts expressing MMP-13 show high collagen reorganization capacity. Moreover, the results suggest that KGF mediates the anti-cancer effects on skin SCC
Resumo:
Integrins are heterodimeric, signaling transmembrane adhesion receptors that connect the intracellular actin microfilaments to the extracellular matrix composed of collagens and other matrix molecules. Bidirectional signaling is mediated via drastic conformational changes in integrins. These changes also occur in the integrin αI domains, which are responsible for ligand binding by collagen receptor and leukocyte specific integrins. Like intact integrins, soluble αI domains exist in the closed, low affinity form and in the open, high affinity form, and so it is possible to use isolated αI domains to study the factors and mechanisms involved in integrin activation/deactivation. Integrins are found in all mammalian tissues and cells, where they play crucial roles in growth, migration, defense mechanisms and apoptosis. Integrins are involved in many human diseases, such as inflammatory, cardiovascular and metastatic diseases, and so plenty of effort has been invested into developing integrin specific drugs. Humans have 24 different integrins, four of which are collagen receptor (α1β1, α2β1, α10β1, α11β1) and five leukocyte specific integrins (αLβ2, αMβ2, αXβ2, αDβ2, αEβ7). These two integrin groups are quite unselective having both primary and secondary ligands. This work presents the first systematic studies performed on these integrin groups to find out how integrin activation affects ligand binding and selectivity. These kinds of studies are important not only for understanding the partially overlapping functions of integrins, but also for drug development. In general, our results indicated that selectivity in ligand recognition is greatly reduced upon integrin activation. Interestingly, in some cases the ligand binding properties of integrins have been shown to be cell type specific. The reason for this is not known, but our observations suggest that cell types with a higher integrin activation state have lower ligand selectivity, and vice versa. Furthermore, we solved the three-dimensional structure for the activated form of the collagen receptor α1I domain. This structure revealed a novel intermediate conformation not previously seen with any other integrin αI domain. This is the first 3D structure for an activated collagen receptor αI domain without ligand. Based on the differences between the open and closed conformation of the αI domain we set structural criteria for a search for effective collagen receptor drugs. By docking a large number of molecules into the closed conformation of the α2I domain we discovered two polyketides, which best fulfilled the set structural criteria, and by cell adhesion studies we showed them to be specific inhibitors of the collagen receptor integrins.
Resumo:
Cyanobacteria are unicellular, non-nitrogen-fixing prokaryotes, which perform photosynthesis similarly as higher plants. The cyanobacterium Synechocystis sp. strain PCC 6803 is used as a model organism in photosynthesis research. My research described herein aims at understanding the function of the photosynthetic machinery and how it responds to changes in the environment. Detailed knowledge of the regulation of photosynthesis in cyanobacteria can be utilized for biotechnological purposes, for example in the harnessing of solar energy for biofuel production. In photosynthesis, iron participates in electron transfer. Here, we focused on iron transport in Synechocystis sp. strain PCC 6803 and particularly on the environmental regulation of the genes encoding the FutA2BC ferric iron transporter, which belongs to the ABC transporter family. A homology model built for the ATP-binding subunit FutC indicates that it has a functional ATPbinding site as well as conserved interactions with the channel-forming subunit FutB in the transporter complex. Polyamines are important for the cell proliferation, differentiation and apoptosis in prokaryotic and eukaryotic cells. In plants, polyamines have special roles in stress response and in plant survival. The polyamine metabolism in cyanobacteria in response to environmental stress is of interest in research on stress tolerance of higher plants. In this thesis, the potd gene encoding an polyamine transporter subunit from Synechocystis sp. strain PCC 6803 was characterized for the first time. A homology model built for PotD protein indicated that it has capability of binding polyamines, with the preference for spermidine. Furthermore, in order to investigate the structural features of the substrate specificity, polyamines were docked into the binding site. Spermidine was positioned very similarly in Synechocystis PotD as in the template structure and had most favorable interactions of the docked polyamines. Based on the homology model, experimental work was conducted, which confirmed the binding preference. Flavodiiron proteins (Flv) are enzymes, which protect the cell against toxicity of oxygen and/or nitric oxide by reduction. In this thesis, we present a novel type of photoprotection mechanism in cyanobacteria by the heterodimer of Flv2/Flv4. The constructed homology model of Flv2/Flv4 suggests a functional heterodimer capable of rapid electron transfer. The unknown protein sll0218, encoded by the flv2-flv4 operon, is assumed to facilitate the interaction of the Flv2/Flv4 heterodimer and energy transfer between the phycobilisome and PSII. Flv2/Flv4 provides an alternative electron transfer pathway and functions as an electron sink in PSII electron transfer.
Resumo:
Studying testis is complex, because the tissue has a very heterogeneous cell composition and its structure changes dynamically during development. In reproductive field, the cell composition is traditionally studied by morphometric methods such as immunohistochemistry and immunofluorescence. These techniques provide accurate quantitative information about cell composition, cell-cell association and localization of the cells of interest. However, the sample preparation, processing, staining and data analysis are laborious and may take several working days. Flow cytometry protocols coupled with DNA stains have played an important role in providing quantitative information of testicular cells populations ex vivo and in vitro studies. Nevertheless, the addition of specific cells markers such as intracellular antibodies would allow the more specific identification of cells of crucial interest during spermatogenesis. For this study, adult rat Sprague-Dawley rats were used for optimization of the flow cytometry protocol. Specific steps within the protocol were optimized to obtain a singlecell suspension representative of the cell composition of the starting material. Fixation and permeabilization procedure were optimized to be compatible with DNA stains and fluorescent intracellular antibodies. Optimization was achieved by quantitative analysis of specific parameters such as recovery of meiotic cells, amount of debris and comparison of the proportions of the various cell populations with already published data. As a result, a new and fast flow cytometry method coupled with DNA stain and intracellular antigen detection was developed. This new technique is suitable for analysis of population behavior and specific cells during postnatal testis development and spermatogenesis in rodents. This rapid protocol recapitulated the known vimentin and γH2AX protein expression patterns during rodent testis ontogenesis. Moreover, the assay was applicable for phenotype characterization of SCRbKO and E2F1KO mouse models.
Resumo:
Apoptotic beta cell death is an underlying cause majorly for type I and to a lesser extent for type II diabetes. Recently, MST1 kinase was identified as a key apoptotic agent in diabetic condition. In this study, I have examined MST1 and closely related kinases namely, MST2, MST3 and MST4, aiming to tackle diabetes by exploring ways to selectively block MST1 kinase activity. The first investigation was directed towards evaluating possibilities of selectively blocking the ATP binding site of MST1 kinase that is essential for the activity of the enzymes. Structure and sequence analyses of this site however revealed a near absolute conservation between the MSTs and very few changes with other kinases. The observed residue variations also displayed similar physicochemical properties making it hard for selective inhibition of the enzyme. Second, possibilities for allosteric inhibition of the enzyme were evaluated. Analysis of the recognized allosteric site also posed the same problem as the MSTs shared almost all of the same residues. The third analysis was made on the SARAH domain, which is required for the dimerization and activation of MST1 and MST2 kinases. MST3 and MST4 lack this domain, hence selectivity against these two kinases can be achieved. Other proteins with SARAH domains such as the RASSF proteins were also examined. Their interaction with the MST1 SARAH domain were evaluated to mimic their binding pattern and design a peptide inhibitor that interferes with MST1 SARAH dimerization. In molecular simulations the RASSF5 SARAH domain was shown to strongly interact with the MST1 SARAH domain and possibly preventing MST1 SARAH dimerization. Based on this, the peptidic inhibitor was suggested to be based on the sequence of RASSF5 SARAH domain. Since the MST2 kinase also interacts with RASSF5 SARAH domain, absolute selectivity might not be achieved.