20 resultados para Calibration uncertainty
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tiivistelmä: TDR-mittausten kalibrointi viljeltyjen turvemaiden kosteuden mittaamiseen
Resumo:
Selostus: Tasoskannerin ja digitaalisen kuva-analyysimenetelmän kalibrointi juurten morfologian kvantifioimiseksi
Resumo:
The Thesis gives a decision support framework that has significant impact on the economic performance and viability of a hydropower company. The studyaddresses the short-term hydropower planning problem in the Nordic deregulated electricity market. The basics of the Nordic electricity market, trading mechanisms, hydropower system characteristics and production planning are presented in the Thesis. The related modelling theory and optimization methods are covered aswell. The Thesis provides a mixed integer linear programming model applied in asuccessive linearization method for optimal bidding and scheduling decisions inthe hydropower system operation within short-term horizon. A scenario based deterministic approach is exploited for modelling uncertainty in market price and inflow. The Thesis proposes a calibration framework to examine the physical accuracy and economic optimality of the decisions suggested by the model. A calibration example is provided with data from a real hydropower system using a commercial modelling application with the mixed integer linear programming solver CPLEX.
Resumo:
Tässä diplomityössä tutkittiin TRL-kalibroinnin käyttämistä tasomaisten siirtojohtojen sähköisten parametrien määrittämisessä taajuusalueella 0,3 – 12 GHz. Työssä perehdyttiin TRL-kalibroinnin käyttämiseen piirianalysaattorilla toteutettujen mittauksien mittauskalibrointiin sekä kalibrointiin tarvittavien kalibrointistandardien mitoittamiseen. Kalibrointistandardit suunniteltiin ja toteutettiin sekä mikroliuska- että liuskajohdoille, joiden toiminnallisuutta tarkasteltiin sekä taajuustason että aikatason mittausten avulla. Työssä perehdyttiin myös kalibrointistandardien liityntärajapinnan suunniteluun ja toteuttamiseen. Saatujen tulosten perusteella voitiin osoittaa mikroliuskajohtokitin soveltuvan hyvin mittauskalibroinnin toteuttamiseen tarkoissa mittaussovelluksissa.
Resumo:
This paper proposes a calibration method which can be utilized for the analysis of SEM images. The field of application of the developed method is a calculation of surface potential distribution of biased silicon edgeless detector. The suggested processing of the data collected by SEM consists of several stages and takes into account different aspects affecting the SEM image. The calibration method doesn’t pretend to be precise but at the same time it gives the basics of potential distribution when the different biasing voltages applied to the detector.
Resumo:
Euroopan unionin direktiiveissä ja kansallisessa lainsäädännössä on asetettu tavoitteita, velvoitteita ja raja-arvoja ilmanlaadun mittauksille. Ilmanlaatua on seurattava, ilmanlaatumittaukset on tehtävä laadukkaasti sekä luotettavasti ja mittaustuloksista on tiedotettava väestölle. Mittausten epävarmuus on tunnettava ja sen on oltava alle 15 %, jotta epävarmuudelle asetettu kriteeri täyttyy. Tässä työssä perehdyttiin Euroopan unionin ilmastopolitiikkaan ja kansalliseen ilmanlaatua koskevaan lainsäädäntöön, käytiin läpi menetelmiä ja tapoja, joilla ilmanlaadusta tiedotetaan väestölle sekä selvitettiin ilmanlaadun mittausjärjestelmiä koskevia vaatimuksia. Ennen varsinaista mittausepävarmuuden selvittämistä käytiin läpi tutkimuksen kohteena olevan typen oksidien analysaattorin mittausperiaate ja merkittävimmät komponentit. Mittausepävarmuus määritettiin standardia SFS-EN 14211 noudattamalla. Mittausepävarmuuden selvittämiseksi analysaattorille tehtiin erilaisia sen toimintaa kuvaavia testejä Ilmatieteen laitoksen kalibrointilaboratoriossa. Saatujen tuloksien perusteella voitiin laskea analysaattorin mittausepävarmuus, joka tuntiraja-arvopitoisuudessa oli 15,5 % ja vuosiraja-arvopitoisuudessa 10,5 %. Kaikkia testejä ei voitu tehdä standardissa määrätyllä tavalla, joten tuloksiin pitää suhtautua kriittisesti. Tulosten perusteella mittausepävarmuus tuntiraja-arvopitoisuudessa ei aivan täytä direktiivin kriteeriä, mutta vuosiraja-arvopitoisuudessa kriteeri täyttyy (< 15 %).
Resumo:
This thesis presents the calibration and comparison of two systems, a machine vision system that uses 3 channel RGB images and a line scanning spectral system. Calibration. is the process of checking and adjusting the accuracy of a measuring instrument by comparing it with standards. For the RGB system self-calibrating methods for finding various parameters of the imaging device were developed. Color calibration was done and the colors produced by the system were compared to the known colors values of the target. Software drivers for the Sony Robot were also developed and a mechanical part to connect a camera to the robot was also designed. For the line scanning spectral system, methods for the calibrating the alignment of the system and the measurement of the dimensions of the line scanned by the system were developed. Color calibration of the spectral system is also presented.
Resumo:
Diplomityössä selvitettiin Fortum Power and Heat Oy:n Loviisan VVER-440 painevesireaktorilaitosten termisen tehon laskentaan liittyviä epävarmuuksia. Laitoksen turvallisuusteknisissä käyttöehdoissa (TTKE) määrätään reaktorin suurimmaksi sallituksi lämpötehoksi 1500 MW. Tähän perustuen haluttiin selvittää nykyiseen RT1 laskentaan liittyvät epävarmuudet tarkastamalla nykyinen laskenta ja siinä käytetyt termohydrauliset laskentasovitteet. Työn alussa selostetaan lyhyesti Loviisan voimalaitoksen toimintaperiaate, jonka jälkeen esitellään laskentaan osallistuvat prosessimittaukset ja niihin liittyvät epävarmuustekijät. Mittauksille määritettiin epävarmuudet käyttäen hyödyksi komponenttivalmistajien tietoja sekä laitoksen kalibrointitodistuksia ja näiden lisäksi laskettiin standardin mukainen virhe virtauslaipoille. Edellä mainittujen virheiden perusteella voitiin laskea tehon epävarmuudet yksittäiselle höyrystimelle, josta edelleen varianssien summamenetelmällä saatiin reaktorin termiselle teholle 0,78 %:n epävarmuus 95 % luottamustasolla. Laskettua tehon epävarmuutta verrattiin Monte Carlo -menetelmällä suoritettuun tarkistuslaskentaan, jolla termisen tehon epävarmuudeksi saatiin 0,53 %, luottamustason ollessa 95 %. Työssä tarkasteltiin keskiarvotuksen vaikutusta mittausdataan. Näissä tarkasteluissa havaittiin pinnansäädöstä aiheutuva reaktoritehon huojunta, joka oli työn merkittävin havainto.
Resumo:
In this dissertation, active galactic nuclei (AGN) are discussed, as they are seen with the high-resolution radio-astronomical technique called Very Long Baseline Interferometry (VLBI). This observational technique provides very high angular resolution (_ 10−300 = 1 milliarcsecond). VLBI observations, performed at different radio frequencies (multi-frequency VLBI), allow to penetrate deep into the core of an AGN to reveal an otherwise obscured inner part of the jet and the vicinity of the AGN’s central engine. Multi-frequency VLBI data are used to scrutinize the structure and evolution of the jet, as well as the distribution of the polarized emission. These data can help to derive the properties of the plasma and the magnetic field, and to provide constraints to the jet composition and the parameters of emission mechanisms. Also VLBI data can be used for testing the possible physical processes in the jet by comparing observational results with results of numerical simulations. The work presented in this thesis contributes to different aspects of AGN physics studies, as well as to the methodology of VLBI data reduction. In particular, Paper I reports evidence of optical and radio emission of AGN coming from the same region in the inner jet. This result was obtained via simultaneous observations of linear polarization in the optical and in radio using VLBI technique of a sample of AGN. Papers II and III describe, in detail, the jet kinematics of the blazar 0716+714, based on multi-frequency data, and reveal a peculiar kinematic pattern: plasma in the inner jet appears to move substantially faster that that in the large-scale jet. This peculiarity is explained by the jet bending, in Paper III. Also, Paper III presents a test of the new imaging technique for VLBI data, the Generalized Maximum Entropy Method (GMEM), with the observed (not simulated) data and compares its results with the conventional imaging. Papers IV and V report the results of observations of the circularly polarized (CP) emission in AGN at small spatial scales. In particular, Paper IV presents values of the core CP for 41 AGN at 15, 22 and 43 GHz, obtained with the help of the standard Gain transfer (GT) method, which was previously developed by D. Homan and J.Wardle for the calibration of multi-source VLBI observations. This method was developed for long multi-source observations, when many AGN are observed in a single VLBI run. In contrast, in Paper V, an attempt is made to apply the GT method to single-source VLBI observations. In such observations, the object list would include only a few sources: a target source and two or three calibrators, and it lasts much shorter than the multi-source experiment. For the CP calibration of a single-source observation, it is necessary to have a source with zero or known CP as one of the calibrators. If the archival observations included such a source to the list of calibrators, the GT could also be used for the archival data, increasing a list of known AGN with the CP at small spatial scale. Paper V contains also calculation of contributions of different sourced of errors to the uncertainty of the final result, and presents the first results for the blazar 0716+714.
Resumo:
Outsourcing is a common strategy for companies looking for cost savings and improvements in performance. This has been especially prevalent in logistics, where warehousing and transporting are typical targets for outsourcing. However, while the benefits from logistics outsourcing are clear on paper, there are several cases companies fail to reach these benefits. The most commonly cited reasons for this are poor information flow between the company and the third party logistics partner, and a lack of integration between the two partners. Uncertainty stems from lack of information, and it can cripple the whole outsourcing operation. This is where enterprise resource planning (ERP) systems step in, as they can have a significant role in improving the flow of information, and integration, which consequently mitigates uncertainty. The purpose of the study is to examine if ERP systems have an effect on a company's decision to outsource logistics operations. Along the rapid advancements in technology during the past decades, ERP systems have also evolved. Therefore, empirical research on the subject needs constant revision as it can quickly become outdated due to ERP systems having more advanced capabilities every year. The research was conducted using a qualitative single-case study of a Finnish manufacturing firm that had outsourced warehousing and transportation operations in the Swedish market. The empirical data was gathered with use of semi-structured interviews with three employees from the case company that were closely related to the outsourcing operation. The theoretical framework that was used to analyze the empirical data was based on Transaction Cost Economics theory. The results of the study were align with the theoretical framework, in that the ERP system of the case company was seen as an enabler for their logistics outsourcing operation. However, the full theoretical benefits from ERP systems concerning extended enterprise functionality and flexibility were not attained due to the case company having an older version of their ERP system. This emphasizes the importance of having up-to-date technology if you want to overcome the shortcomings of ERP systems in outsourcing situations.
Resumo:
Tool center point calibration is a known problem in industrial robotics. The major focus of academic research is to enhance the accuracy and repeatability of next generation robots. However, operators of currently available robots are working within the limits of the robot´s repeatability and require calibration methods suitable for these basic applications. This study was conducted in association with Stresstech Oy, which provides solutions for manufacturing quality control. Their sensor, based on the Barkhausen noise effect, requires accurate positioning. The accuracy requirement admits a tool center point calibration problem if measurements are executed with an industrial robot. Multiple possibilities are available in the market for automatic tool center point calibration. Manufacturers provide customized calibrators to most robot types and tools. With the handmade sensors and multiple robot types that Stresstech uses, this would require great deal of labor. This thesis introduces a calibration method that is suitable for all robots which have two digital input ports free. It functions with the traditional method of using a light barrier to detect the tool in the robot coordinate system. However, this method utilizes two parallel light barriers to simultaneously measure and detect the center axis of the tool. Rotations about two axes are defined with the center axis. The last rotation about the Z-axis is calculated for tools that have different width of X- and Y-axes. The results indicate that this method is suitable for calibrating the geometric tool center point of a Barkhausen noise sensor. In the repeatability tests, a standard deviation inside robot repeatability was acquired. The Barkhausen noise signal was also evaluated after recalibration and the results indicate correct calibration. However, future studies should be conducted using a more accurate manipulator, since the method employs the robot itself as a measuring device.
Resumo:
The aim of this thesis is to propose a novel control method for teleoperated electrohydraulic servo systems that implements a reliable haptic sense between the human and manipulator interaction, and an ideal position control between the manipulator and the task environment interaction. The proposed method has the characteristics of a universal technique independent of the actual control algorithm and it can be applied with other suitable control methods as a real-time control strategy. The motivation to develop this control method is the necessity for a reliable real-time controller for teleoperated electrohydraulic servo systems that provides highly accurate position control based on joystick inputs with haptic capabilities. The contribution of the research is that the proposed control method combines a directed random search method and a real-time simulation to develop an intelligent controller in which each generation of parameters is tested on-line by the real-time simulator before being applied to the real process. The controller was evaluated on a hydraulic position servo system. The simulator of the hydraulic system was built based on Markov chain Monte Carlo (MCMC) method. A Particle Swarm Optimization algorithm combined with the foraging behavior of E. coli bacteria was utilized as the directed random search engine. The control strategy allows the operator to be plugged into the work environment dynamically and kinetically. This helps to ensure the system has haptic sense with high stability, without abstracting away the dynamics of the hydraulic system. The new control algorithm provides asymptotically exact tracking of both, the position and the contact force. In addition, this research proposes a novel method for re-calibration of multi-axis force/torque sensors. The method makes several improvements to traditional methods. It can be used without dismantling the sensor from its application and it requires smaller number of standard loads for calibration. It is also more cost efficient and faster in comparison to traditional calibration methods. The proposed method was developed in response to re-calibration issues with the force sensors utilized in teleoperated systems. The new approach aimed to avoid dismantling of the sensors from their applications for applying calibration. A major complication with many manipulators is the difficulty accessing them when they operate inside a non-accessible environment; especially if those environments are harsh; such as in radioactive areas. The proposed technique is based on design of experiment methodology. It has been successfully applied to different force/torque sensors and this research presents experimental validation of use of the calibration method with one of the force sensors which method has been applied to.